98%
921
2 minutes
20
Rationale: Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical.
Objectives: To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation.
Methods: Human eosinophils or endothelial cells stimulated with IL-4, IL-13 or IL-5 were assessed for gene changes or chemokine release.Mice exposed to house dust mite extract received anti-IL-4Rα (dupilumab), anti-IL-5 or control antibodies and were assessed for changes in lung histological and inflammatory endpoints.
Measurements And Main Results: IL-4 or IL-13 stimulation of human eosinophils and endothelial cells induced gene expression changes related to granulocyte migration; whereas, IL-5 induced changes reflecting granulocyte differentiation.In a mouse model, blocking IL-4Rα improved lung function by impacting multiple effectors of inflammation and remodeling, except peripheral eosinophil counts, thereby disconnecting blood eosinophils from airway inflammation, remodeling and function. Blocking IL-5 globally reduced eosinophil counts but did not impact inflammatory or functional measures of lung pathology. Whole lung transcriptome analysis revealed that IL-5 or IL-4Rα blockade impacted eosinophil associated genes, whereas IL-4Rα blockade also impacted genes associated with multiple cells, cytokines and chemokines, mucus production, cell:cell adhesion and vascular permeability.
Conclusions: Eosinophils are not the sole contributor to asthma pathophysiology or lung function decline and emphasizes the need to block additional mediators to modify lung inflammation and impact lung function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cyto.2022.156091 | DOI Listing |
Allergol Immunopathol (Madr)
September 2025
Department of Pediatrics, Ankang Hospital of Traditional Chinese Medicine, Ankang, China;
Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.
View Article and Find Full Text PDFActa Anaesthesiol Scand
October 2025
Centre for Anaesthesiological Research, Department of Anaesthesiology, Zealand University Hospital, Køge, Denmark.
Background: Multiple organ dysfunction syndrome (MODS) in critical illness involves dysregulated immune and inflammatory responses, endotheliopathy, and coagulation activation. We investigated how three types of endotheliopathy biomarkers relate to pro- and anti-inflammatory responses and clinical outcomes in intensive care unit (ICU) patients.
Methods: In this secondary, explorative analysis of a prospective single-centre cohort (n = 459), we assessed associations between endotheliopathy biomarkers (syndecan-1, soluble thrombomodulin (sTM), platelet endothelial cell adhesion molecule-1 (PECAM-1)) and inflammatory biomarkers (pro-inflammatory: IFN-ϒ, IL-1β, IL-2, IL-6, IL-8, IL-12p70, TNF-α; anti-inflammatory: IL-4, IL-10, IL-13) at ICU admission using linear regression.
Front Immunol
September 2025
Department of Dermatology, The National Center for the Integration of Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China.
Background: Bullous Pemphigoid (BP) is caused by a predominantly Th2-mediated attack on the basement membrane by the production of anti-BP180 and anti-BP230 antibodies. Malignant tumors can exacerbate immune disorders through a variety of potential pathways, including pro-inflammatory responses in the tumor microenvironment, cross-immune responses induced by tumor-associated antigens, and the lifting of immunosuppressive states and activation of underlying autoimmune responses after surgery. Alopecia Areata (AA) is an autoimmune disease caused by T-lymphocyte-mediated destruction of the immune privilege of the hair follicle, specifically involving the immune axes of Th1, Th2 and Th17.
View Article and Find Full Text PDFJ Dermatol
September 2025
Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan.
Dupilumab, a fully human IgG4 monoclonal antibody that inhibits interleukin (IL)-4 and IL-13 signaling by blocking the shared IL-4α subunit, is the first targeted systemic therapy for moderate-to-severe atopic dermatitis (AD). The drug was introduced in Japan in April 2018, along with other countries around the same time, leading to a dramatic improvement in patients' quality of life. This study aims to provide practical insights into the real-world use of dupilumab to support decision-making in drug selection and patient education.
View Article and Find Full Text PDFJ Allergy Clin Immunol
September 2025
Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA. Electronic address: