The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment.
View Article and Find Full Text PDFRationale: Type 2 (T2) asthma is characterized by airflow limitations and elevated levels of blood and sputum eosinophils, fractional exhaled nitric oxide, IgE, and periostin. While eosinophils are associated with exacerbations, the contribution of eosinophils to lung inflammation, remodeling and function remains largely hypothetical.
Objectives: To determine the effect of T2 cytokines IL-4, IL-13 and IL-5 on eosinophil biology and compare the impact of depleting just eosinophils versus inhibiting all aspects of T2 inflammation on airway inflammation.
Background: Dupilumab, a fully human monoclonal antibody that binds IL-4Rα and inhibits signaling of both IL-4 and IL-13, has shown efficacy across multiple diseases with underlying type 2 signatures and is approved for treatment of asthma, atopic dermatitis, and chronic sinusitis with nasal polyposis. We sought to provide a comprehensive analysis of the redundant and distinct roles of IL-4 and IL-13 in type 2 inflammation and report dupilumab mechanisms of action.
Methods: Using primary cell assays and a mouse model of house dust mite-induced asthma, we compared IL-4 vs IL-13 vs IL-4Rα blockers.
J Allergy Clin Immunol
December 2019
Background: Severe inflammatory airway diseases are associated with inflammation that does not resolve, leading to structural changes and an overall environment primed for exacerbations.
Objective: We sought to identify and inhibit pathways that perpetuate this heightened inflammatory state because this could lead to therapies that allow for a more quiescent lung that is less predisposed to symptoms and exacerbations.
Methods: Using prolonged exposure to house dust mite in mice, we developed a mouse model of persistent and exacerbating airway disease characterized by a mixed inflammatory phenotype.