Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep learning techniques using convolutional neural networks (CNNs) have been successfully developed for various medical image analysis tasks. However, the skills to understand and develop deep learning models are not usually taught during radiology training, which constitutes a barrier for radiologists looking to integrate machine learning (ML) into their research or clinical practice. In this work, we developed and evaluated an educational graphical user interface (GUI) to construct CNNs for teaching deep learning concepts to radiology trainees. The GUI was developed in Python using the PyQt and PyTorch frameworks. The functionality of the GUI was demonstrated through a binary classification task on a dataset of MR images of the brain. The usability of the GUI was assessed through 45-min user testing sessions with 5 neuroradiologists and neuroradiology fellows, assessing mean task completion times, the System Usability Scale (SUS), and a qualitative questionnaire as metrics. Task completion times were compared against a ML expert who performed the same tasks. After a 20-min introduction to CNNs and a walkthrough of the GUI, users were able to perform all assigned tasks successfully. There was no significant difference in task completion time compared to a ML expert. The educational GUI achieved a score of 82.5 on the SUS, suggesting that the system is highly usable. Users indicated that the GUI seems useful as an educational tool to teach ML topics to radiology trainees. An educational GUI allows interactive teaching in ML that can be incorporated into radiology training.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08465371221144264DOI Listing

Publication Analysis

Top Keywords

deep learning
12
task completion
12
educational graphical
8
graphical user
8
user interface
8
convolutional neural
8
neural networks
8
radiology training
8
gui
8
radiology trainees
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

SPACE: STRING proteins as complementary embeddings.

Bioinformatics

September 2025

Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark.

Motivation: Representation learning has revolutionized sequence-based prediction of protein function and subcellular localization. Protein networks are an important source of information complementary to sequences, but the use of protein networks has proven to be challenging in the context of machine learning, especially in a cross-species setting.

Results: We leveraged the STRING database of protein networks and orthology relations for 1,322 eukaryotes to generate network-based cross-species protein embeddings.

View Article and Find Full Text PDF

Objective: Diffusion magnetic resonance imaging (dMRI) often suffers from low spatial and angular resolution due to inherent limitations in imaging hardware and system noise, adversely affecting the accurate estimation of microstructural parameters with fine anatomical details. Deep learning-based super-resolution techniques have shown promise in enhancing dMRI resolution without increasing acquisition time. However, most existing methods are confined to either spatial or angular super-resolution, disrupting the information exchange between the two domains and limiting their effectiveness in capturing detailed microstructural features.

View Article and Find Full Text PDF