Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The neuropathology of Parkinson's disease (PD) associated with leucine-rich repeat kinase 2 (LRRK2) mutations (LRRK2-PD) is heterogeneous and varies with the type of mutation. There are only a few studies evaluating seeding aggregation assays to detect α-synuclein (α-syn) in patients with LRRK2-PD.

Objective: We aimed to investigate whether α-syn real-time quaking induced conversion (RT-QuIC) is a sensitive biomarker of synucleinopathy in LRRK2-PD.

Methods: We studied α-syn RT-QuIC in brain tissue and postmortem ventricular cerebrospinal fluid (CSF) of LRRK2-PD cases with and without Lewy-type pathology.

Results: The accuracy of α-syn RT-QuIC in substantia nigra and CSF samples of patients with LRRK2-PD was 100%. The test also obtained 100% sensitivity to detect misfolded α-syn in substantia nigra of cases with idiopathic PD and was negative in the substantia nigra of all the control brains without Lewy-type pathology.

Conclusions: Substantia nigra and ventricular CSF RT-QuIC discriminates with high sensitivity and specificity LRRK2 cases with Lewy-type pathology from those without it. RT-QuIC assay could be of particular interest in the selection of cases for clinical trials in this genetic form of PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.29284DOI Listing

Publication Analysis

Top Keywords

substantia nigra
16
cerebrospinal fluid
8
α-syn rt-quic
8
cases lewy-type
8
α-syn
5
rt-quic
5
brain cerebrospinal
4
fluid α-synuclein
4
α-synuclein real-time
4
real-time quaking-induced
4

Similar Publications

MicroRNAs and synaptic dysfunction in Parkinson's disease.

Mol Ther Nucleic Acids

September 2025

Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.

Parkinson's disease (PD) is a debilitating neurodegenerative condition. Synaptic dysfunctions are associated with the onset and progressive neurodegeneration exhibited in PD. Healthy, active synapses are a prerequisite for non-pathological neurotransmission.

View Article and Find Full Text PDF

Objective: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized pathologically by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to a significant decline in striatal dopamine levels. This study aims to systematically analyze alterations in striatal metabolites across different stages of PD to identify potential biomarkers, elucidate pathological mechanisms, and explore therapeutic targets.

Methods: A total of 72 mice were divided into six groups, including one control group and five PD model groups (W1-W5, representing distinct stages based on the duration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid induction).

View Article and Find Full Text PDF

Dendritic Cells Induce Clec5a-mediated Immune Modulation in MPTP-induced Parkinson's Disease Mouse Model.

Front Biosci (Landmark Ed)

August 2025

Division of Life Sciences and Department of Life Science, Graduate School, CHA University, 13488 Seongnam-si, Gyeonggi-do, Republic of Korea.

Background: Parkinson's disease (PD) is characterized by a progressive decline in dopaminergic neurons within the substantia nigra (SN). Although its underlying cause has yet to be fully elucidated, accumulating evidence suggests that neuroinflammation contributes substantially to disease development. Treatment strategies targeting neuroinflammation could improve PD outcomes.

View Article and Find Full Text PDF

Age is the most significant risk factor for Parkinson's disease, a common and progressive neurodegenerative disorder; however, exposure to toxic substances is also strongly implicated. Rotenone, an organic pesticide, induces neuropathological features of Parkinson's disease, and is widely used to create rodent models of the condition. Although the molecular mechanisms involved in the onset and progression of the disease are still unknown, neurodegenerative diseases due to protein accumulation in certain areas of the brain, have been associated with endoplasmic reticulum stress.

View Article and Find Full Text PDF

Aging is the main risk factor for Parkinson's disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson's Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage.

View Article and Find Full Text PDF