Efficacy of molecular and nano-therapies on brain tumor models in microfluidic devices.

Biomater Adv

Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The three-dimensional (3D) organization of cells affects their mobility, proliferation, and overall response to treatment. Spheroids, organoids, and microfluidic chips are used in cancer research to reproduce in vitro the complex and dynamic malignant microenvironment. Herein, single- and double-channel microfluidic devices are used to mimic the spatial organization of brain tumors and investigate the therapeutic efficacy of molecular and nano anti-cancer agents. Human glioblastoma multiforme (U87-MG) cells were cultured into a Matrigel matrix embedded within the microfluidic devices and exposed to different doses of free docetaxel (DTXL), docetaxel-loaded spherical polymeric nanoparticles (DTXL-SPN), and the aromatic N-glucoside N-(fluorenylmethoxycarbonyl)-glucosamine-6-phosphate (Fmoc-Glc6P). We observed that in the single-channel microfluidic device, brain tumor cells are more susceptible to DTXL treatment as compared to conventional cell monolayers (50-fold lower IC values). In the double-channel device, the cytotoxicity of free DTXL and DTXL-SPN is comparable, but significantly lowered as compared to the single-channel configuration. Finally, the administration of 500 μM Fmoc-Glc6P in the double-channel microfluidic device shows a 50 % U87-MG cell survival after only 24 h, and no deleterious effect on human astrocytes over 72 h. Concluding, the proposed microfluidic chips can be used to reproduce the 3D complex spatial arrangement of solid tumors and to assess the anti-cancer efficacy of therapeutic compounds administrated in situ or systemically.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioadv.2022.213227DOI Listing

Publication Analysis

Top Keywords

microfluidic devices
12
efficacy molecular
8
brain tumor
8
microfluidic chips
8
double-channel microfluidic
8
microfluidic device
8
microfluidic
7
molecular nano-therapies
4
nano-therapies brain
4
tumor models
4

Similar Publications

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Rational design of tunable pH switches through shadow-strand hybridization-actuated displacement engineering.

Nucleic Acids Res

September 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Local pH variations play a pivotal role in numerous critical biological processes. However, achieving the tunability and selectivity of pH detection remains a challenge. Here, we present a DNA-based strategy that enables programmable and selective pH responses, which is termed shadow-strand hybridization-actuated displacement engineering (SHADE).

View Article and Find Full Text PDF

Food nutrition and safety are fundamental to the food industry, and the development of appropriate research models is crucial. Unlike traditional animal models, the innovative organoid/organ-on-a-chip model possess distinct human-like characteristics and genomic stability, which have garnered significant attention in food research. In this review, we conduct a comparative analysis between organoids and traditional animal and 2D cell models.

View Article and Find Full Text PDF

Protective effect of osmanthus water extract on liver dysfunction caused by DBP based on organoids and organ chips technologies.

Food Res Int

November 2025

Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China. Electronic address:

This study aimed to investigate the protective mechanism of Osmanthus fragrans water extract (OSF) against liver injury induced by dibutyl phthalate (DBP). We utilized liver organoids and liver organ chip technology to replicate the liver microenvironment in vivo. Metabolomic analysis revealed that DBP induced oxidative stress and lipid metabolism disorders; however, following intervention with OSF, the associated abnormal metabolites were significantly reduced.

View Article and Find Full Text PDF

An electrochemiluminescence device powered by streaming potential for the detection of amines in flowing solution.

Nat Commun

September 2025

Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

The research and implementation of portable and low-cost analytical devices that possess high reproducibility and ease of operation is still a challenging task, and a growing field of importance, within the analytical research. Herein, we report the concept, design and optimization of a microfluidic device based on electrochemiluminescence (ECL) detection that can be potentially operated without electricity for analytical purposes. The device functions exploiting the concept of streaming potential-driven bipolar electrochemistry, where a potential difference, generated from the flow of an electrolyte through a microchannel under the influence of a pressure gradient, is the driving force for redox reactions.

View Article and Find Full Text PDF