Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977673PMC
http://dx.doi.org/10.1111/cpr.13375DOI Listing

Publication Analysis

Top Keywords

biological functions
12
non-coding rnas
12
ncrnas gbm
8
rnas
6
gbm
5
ncrnas
5
systematic characterization
4
characterization biological
4
functions
4
functions non-coding
4

Similar Publications

Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods.

View Article and Find Full Text PDF

Dual function of itaconic acid from against .

Plant Dis

September 2025

Shenyang Agricultural University, College of Plant Protection, Nematology Institute of Northern China, Shenyang, China;

Root-knot nematodes (Meloidogyne spp.) cause catastrophic yield losses in global agriculture. This study identified itaconic acid (IA), through comparative metabolomic analysis (the study of small molecules in biological systems), as a key virulence-related metabolite produced by the fungus Trichoderma citrinoviride Snef1910.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF