98%
921
2 minutes
20
Introduction: Increasing digital delivery of smoking cessation interventions has resulted in the need to employ novel strategies for remote biochemical verification.
Aims And Methods: This scoping review and meta-analysis aimed to investigate best practices for remote biochemical verification of smoking status. The scientific literature was searched for studies that reported remotely obtained (not in-person) biochemical confirmation of smoking status (ie, combustible tobacco). A meta-analysis of proportions was conducted to investigate key outcomes, which included rates of returned biological samples and the ratio of biochemically verified to self-reported abstinence rates.
Results: A total of 82 studies were included. The most common samples were expired air (46%) and saliva (40% of studies), the most common biomarkers were carbon monoxide (48%) and cotinine (44%), and the most common verification methods were video confirmation (37%) and mail-in samples for lab analysis (26%). Mean sample return rates determined by random-effects meta-analysis were 70% for smoking cessation intervention studies without contingency management (CM), 77% for CM studies, and 65% for other studies (eg, feasibility and secondary analyses). Among smoking cessation intervention studies without CM, self-reported abstinence rates were 21%, biochemically verified abstinence rates were 10%, and 47% of individuals who self-reported abstinence were also biochemically confirmed as abstinent.
Conclusions: This scoping review suggests that improvements in sample return rates in remote biochemical verification studies of smoking status are needed. Recommendations for reporting standards are provided that may enhance confidence in the validity of reported abstinence rates in remote studies.
Implications: This scoping review and meta-analysis included studies using remote biochemical verification to determine smoking status. Challenges exist regarding implementation and ensuring high sample return rates. Higher self-reported compared to biochemically verified abstinence rates suggest the possibility that participants in remote studies may be misreporting abstinence or not returning samples for other reasons (eg, participant burden, inconvenience). Remote biochemical confirmation of self-reported smoking abstinence should be included in smoking cessation studies whenever feasible. However, findings should be considered in the context of challenges to sample return rates. Better reporting guidelines for future studies in this area are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10347976 | PMC |
http://dx.doi.org/10.1093/ntr/ntac271 | DOI Listing |
Prog Mol Biol Transl Sci
September 2025
School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:
This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFTree Physiol
September 2025
Department of Plant Sciences, University of California, Davis, CA, USA.
Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400-2400 nm) and canopy (420-850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA.
View Article and Find Full Text PDFEur J Surg Oncol
August 2025
Department of Surgical, Medical, Molecular Pathology, and Critical Care, University of Pisa, Pisa 56124, Italy. Electronic address:
Background: Robot-assisted transaxillary thyroidectomy (RATT) has emerged as a remote access approach for differentiated thyroid carcinoma (DTC), yet data on its oncological efficacy for tumors larger than 3 cm, particularly in European cohorts, remain scarce. This study aimed to evaluate surgical and oncological outcomes of RATT in patients with papillary thyroid carcinoma (PTC), stratified by tumor size.
Materials And Methods: We retrospectively reviewed 270 patients with histologically confirmed PTC who underwent RATT between July 2012 and August 2022 at a single tertiary center.
Nat Commun
September 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
Mechanical cues are critical regulators of cell fate and behavior through the orchestrated and continual conversion of physical forces into biochemical responses. However, due to the poor compatibility between mechanical and biochemical techniques, existing methods are often limited in characterizing the occurring biochemical signals during mechanical stimulation. Herein, this work presents a magneto-responsive nanomesh (MRnM) biosensor capable of mechanically stimulating cells in vitro and tissues in vivo and simultaneously detecting the triggered biomolecules.
View Article and Find Full Text PDF