Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liquid chromatography mass spectrometry (LC-MS) has emerged as a mainstream strategy for metabolomics analyses. One advantage of LC-MS is that it can serve both as a biomarker discovery tool and as a platform for clinical diagnostics. Consequently, it offers an exciting opportunity to potentially transition research studies into real-world clinical tools. One important distinction between research versus diagnostics-based applications of LC-MS is throughput. Clinical LC-MS must enable quantitative analyses of target molecules in hundreds or thousands of samples each day. Currently, the throughput of these clinical applications is limited by the chromatographic gradient lengths, which-when analyzing complex metabolomics samples-are difficult to conduct in under ~ 3 min per sample without introducing serious quantitative analysis problems. To address this shortcoming, we developed sequential quantification using isotope dilution (SQUID), an analytical strategy that combines serial sample injections into a continuous isocratic mobile phase to maximize throughput. SQUID uses internal isotope-labelled standards to correct for changes in LC-MS response factors over time. We show that SQUID can detect microbial polyamines in human urine specimens (lower limit of quantification; LLOQ = 106 nM) with less than 0.019 normalized root mean square error. Moreover, we show that samples can be analyzed in as little as 57 s. We propose SQUID as a new, high-throughput LC-MS tool for quantifying small sets of target biomarkers across large cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823034PMC
http://dx.doi.org/10.1007/s00216-022-04384-xDOI Listing

Publication Analysis

Top Keywords

throughput clinical
8
lc-ms
6
rapid lc-ms
4
lc-ms assay
4
assay targeted
4
targeted metabolite
4
metabolite quantification
4
quantification serial
4
serial injection
4
injection isocratic
4

Similar Publications

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.

View Article and Find Full Text PDF

Harnessing the potential of spatial statistics for spatial omics data with pasta.

Nucleic Acids Res

September 2025

Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.

Spatial omics allow for the molecular characterization of cells in their spatial context. Notably, the two main technological streams, imaging-based and high-throughput sequencing-based, give rise to very different data modalities. The characteristics of the two data types are well known in spatial statistics as point patterns and lattice data.

View Article and Find Full Text PDF

Edge computing-based FPGA real-time material decomposition system for photon counting CT.

Comput Methods Programs Biomed

September 2025

Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing, 210096, China; Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, 210096, China. Electronic address: xuji@s

Background: Photon counting computed tomography (PCCT) has emerged as a potential technology that is revolutionizing clinical CT imaging. Using photon counting detectors (PCDs), the PCCT counts each X-ray event and measures the corresponding energy above the noise floor with significantly higher spatial resolution. However, the multiple-energy-bin setting and much smaller pixels increase the raw data size of PCCT by 20-100 times compared to traditional CT.

View Article and Find Full Text PDF

Germline Findings From Tumor-Only Comprehensive Genomic Profiling in the RATIONAL Study: A Missed Opportunity?

JCO Precis Oncol

September 2025

Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy.

Purpose: Tumor comprehensive genomic profiling (CGP) may detect potential germline pathogenic/likely pathogenic (P/LP) alterations as secondary findings. We analyzed the frequency of potentially germline variants and large rearrangements (LRs) in the RATIONAL study, an Italian multicenter, observational clinical trial that collects next-generation sequencing-based tumor profiling data, and evaluated how these findings were managed by the enrolling centers.

Patients And Methods: Patients prospectively enrolled in the pathway-B of the RATIONAL study and undergoing CGP with the FoundationOne CDx assays were included in the analysis.

View Article and Find Full Text PDF