Real-Time Visualization of the Antioxidative Potency of Drugs for the Prevention of Myocardium Ischemia-Reperfusion Injury by a NIR Fluorescent Nanoprobe.

ACS Sens

State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The burst of the reactive oxygen species (ROS) is the culprit of myocardial ischemia-reperfusion injury. As direct ROS scavengers, antioxidants are clinically documented drugs for the prevention of reperfusion injury. However, some drugs give disappointing therapeutic performance despite their good in vitro effects. Therefore, in vivo assessments are necessary to screen the antioxidants before clinical trials. However, traditional methods such as histological study require invasive and complicated preprocessing of the biological samples, which may fail to reflect the actual level of the unstable ROS with a very short lifetime. Peroxynitrite (ONOO) is a characteristic endogenous ROS produced during reperfusion. Here, we modified the ONOO-responsive near-infrared fluorescent probe on a myocardium-targeting silica cross-linked micelle to prepare a nanoprobe for the real-time monitoring of ONOO during coronary reperfusion. A ROS-stable cyanine dye was co-labeled as an internal reference to achieve ratiometric sensing. The nanoprobe can passively target the infarcted myocardium and monitor the generation of ONOO during reperfusion in real-time. The antioxidants, carvedilol, atorvastatin, and resveratrol, were used as model drugs to demonstrate the capability of the nanoprobe to evaluate the antioxidative potency in situ. The drugs were either loaded and delivered by the nanoprobe to compare their in vivo efficacy under similar concentrations or administered intraperitoneally as a free drug to take their pharmacokinetics into account. The imaging results revealed that pharmacokinetics might be the determinant factor that influences the efficacy of the antioxidants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.2c01857DOI Listing

Publication Analysis

Top Keywords

antioxidative potency
8
drugs prevention
8
ischemia-reperfusion injury
8
drugs
5
nanoprobe
5
real-time visualization
4
visualization antioxidative
4
potency drugs
4
prevention myocardium
4
myocardium ischemia-reperfusion
4

Similar Publications

Efficacy of Ginkgo biloba extract in controlling patulin production by Penicillium expansum in sweet cherries.

Food Res Int

November 2025

SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:

Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).

View Article and Find Full Text PDF

Tetramethylpyrazine (TMP), a bioactive alkaloid isolated from the traditional Chinese medicine (, has gained significant attention for its therapeutic potential in cerebrovascular diseases and cognitive impairment, mainly due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, its clinical application is often limited by suboptimal pharmacokinetic characteristics and modest potency. This review highlights recent advancements in the structure-activity relationship (SAR) optimization of TMP, focusing on its derivatives' neuroprotective efficacy and vascular benefits.

View Article and Find Full Text PDF

Computational approaches within the framework of density functional theory (DFT) are used to probe the effects of gold nanoparticles (AuNPs) on the antioxidant potency of gallic acid (HGA), which is a prototypical polyphenolic acid. Four small gold clusters, Au with = 2, 3, 6, and 11, are employed as simple models to simulate the surface of AuNPs. The antioxidant capacity is evaluated through the ability to donate a hydrogen atom and to transfer an electron, which are characterized by the bond dissociation enthalpy (BDE) and ionization energy (IE) of the antioxidant, respectively.

View Article and Find Full Text PDF

The present study aims to develop novel antimalarial and antimicrobial agents by synthesizing a series of 25 triazolyl quinoline carboxylate derivatives via azide-alkyne 1,3-dipolar cycloaddition, starting from isatin and p-fluoroacetophenone. Structural characterization was performed using IR, H NMR, C NMR, and mass spectrometry. The synthesized hybrids were evaluated for their in vitro antimalarial activity against the chloroquine-sensitive Plasmodium falciparum 3D7 strain.

View Article and Find Full Text PDF

Introduction: Inflammation and oxidative stress are considered main pathophysiological factors for neuronal and cardiovascular diseases, also leading to the impairment of main cellular metabolic pathways. Promotion of hyperlipidemia is also the result of inflammatory and oxidative (ROS production) processes. Additionally, compounds of medicinal interest like valproic and caffeic acids and amino acids like proline and tyrosine have shown antiinflammatory and cellular protective potency.

View Article and Find Full Text PDF