98%
921
2 minutes
20
Transgenerational plasticity (TGP)-when a parent or previous generation's environmental experience affects offspring phenotype without involving a genetic change-can be an important mechanism allowing for rapid adaptation. However, despite increasing numbers of empirical examples of TGP, there appears to be considerable variation in its strength and direction, yet limited understanding of what causes this variation. We compared patterns of TGP in response to stress across two populations with high versus low historical levels of stress exposure. Specifically, we expected that exposure to acute stress in the population experiencing historically high levels of stress would result in adaptive TGP or alternatively fixed tolerance (no parental effect), whereas the population with low levels of historical exposure would result in negative parental carryover effects. Using a common sessile marine invertebrate, , and a split brood design, we exposed parents from both populations to copper or control treatments in the laboratory and then had them brood copper-naïve larvae. We then exposed half of each larval brood to copper and half to control conditions before allowing them to grow to maturity in the field. Maternal copper exposure had a strong negative carryover effect on adult offspring growth and survival in the population without historical exposure, especially when larvae themselves were exposed to copper. We found little to no maternal or offspring treatment effect on adult growth and survival in the population with a history of copper exposure. However, parents from this population produced larger larvae on average and were able to increase the size of their larvae in response to copper exposure, providing a potential mechanism for maintaining fitness and suggesting TGP through maternal provisioning. These results indicate that the ability to adjust offspring phenotype via TGP may be a locally adapted trait and potentially influenced by past patterns of exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9666713 | PMC |
http://dx.doi.org/10.1002/ece3.9524 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, environments and Materials, Guangxi University, Nanning 530004, China.
To date, Cu(I)-based metal halides with high photoluminescence quantum yields (PLQYs) have primarily focused on their zero-dimensional or one-dimensional structures, significantly reflecting the charge or carrier localization. Designing two-dimensional (2D) hybrid copper(I) halides remains a significant challenge for optoelectronic applications, particularly in simultaneously achieving high PLQY and exceptional structural stability. Here, we report a novel series of 2D hybrid Cu(I) halides, (TDMP)CuX (TDMP = 2,5-dimethylpiperazine and X = Cl, Br), synthesized through simple solution-cooling crystallization methods.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Background: Chronic kidney disease (CKD), a global health challenge, is closely linked to renal fibrosis progression. Copper, an essential trace element, influences cellular functions, yet its role in CKD-related fibrosis remains unclear. This study explores the causal relationship between serum copper levels and renal fibrosis in CKD.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Metal oxide nanoparticles are employed in various applications such as medicine, environmental remediation, molecular sensing, and drug delivery. However, large-scale commercial production and the use of smaller-sized nanoparticles increase the potential risk of toxicity to humans. Therefore, there is an urgent need to investigate the toxicity of nanomaterials.
View Article and Find Full Text PDFNutr Metab Cardiovasc Dis
July 2025
Department of Pharmacy, Women and Children's Hospital, School of Medicine, Xiamen University, 10# Zhenhai Road, Xiamen, China. Electronic address:
Background And Aims: Adolescent hypertension is a growing public health concern, with oxidative stress emerging as a pivotal factor in its development. Oxidative Balance Score (OBS) consists of 20 components, including 16 nutrients (such as carotenoids, riboflavin, copper, etc.) and 4 lifestyle factors (physical activity, BMI, alcohol consumption, and smoking), with higher scores indicating increased exposure to antioxidants.
View Article and Find Full Text PDFIntegr Environ Assess Manag
September 2025
School of Public Health, Taipei Medical University, New Taipei City, 235040Taiwan.
Incorporating bioaccessibility into health risk assessments enhances the accuracy of exposure estimates for heavy metal (HM) pollution, supports targeted remediation, and informs public health and policy decisions, particularly for vulnerable populations. Because HM bioaccessibility depends on local soil and geographic characteristics, identifying its relationship with soil properties is crucial for assessing soil pollution potential. Although HM concentrations can be measured relatively easily, bioaccessibility requires complex laboratory procedures, limiting routine applications in regulatory contexts.
View Article and Find Full Text PDF