MEK1-dependent MondoA phosphorylation regulates glucose uptake in response to ketone bodies in colorectal cancer cells.

Cancer Sci

Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Mondo family transcription factor MondoA plays a pivotal role in sensing metabolites, such as glucose, glutamine, and lactic acid, to regulate glucose metabolism and cell proliferation. Ketone bodies are important signals for reducing glucose uptake. However, it is unclear whether MondoA functions in ketone body-regulated glucose transport. Here we reported that ketone bodies promoted MondoA nuclear translocation and binding to the promoter of its target gene TXNIP. Ketone bodies reduced glucose uptake, increased apoptosis and decreased proliferation of colorectal cancer cells, which was impeded by MondoA knockdown. Moreover, we identified MEK1 as a novel component of the MondoA protein complex using a proteomic approach. Mechanistically, MEK1 interacted with MondoA and enhanced tyrosine 222, but not serine or threonine, phosphorylation of MondoA, inhibiting MondoA nuclear translocation and transcriptional activity. Ketone bodies decreased MEK1-dependent MondoA phosphorylation by blocking MondoA and MEK1 interaction, leading to MondoA nuclear translocation, TXNIP transcription, and inhibition of glucose uptake. Therefore, our study not only demonstrated that ketone bodies reduce glucose uptake, promote apoptosis, and inhibit cell proliferation in colorectal cancer cells by regulating MondoA phosphorylation but also identified MEK1-dependent phosphorylation as a new mechanism to manipulate MondoA activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986092PMC
http://dx.doi.org/10.1111/cas.15667DOI Listing

Publication Analysis

Top Keywords

ketone bodies
24
glucose uptake
20
mondoa
13
mondoa phosphorylation
12
colorectal cancer
12
cancer cells
12
mondoa nuclear
12
nuclear translocation
12
mek1-dependent mondoa
8
glucose
8

Similar Publications

Cancer cells are exposed to diverse metabolites in the tumour microenvironment that are used to support the synthesis of nucleotides, amino acids and lipids needed for rapid cell proliferation. In some tumours, ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle. Here we identify a non-canonical route for β-OHB metabolism that bypasses the TCA cycle to generate cytosolic acetyl-CoA.

View Article and Find Full Text PDF

Multiple exogenous supplements to achieve ketosis using the oral route have been developed to elevate blood BHB levels on demand and in a controllable fashion. The focus is now shifting to evaluating these supplements as potential therapeutic agents and developing strategies to not only achieve ketosis but also maintain it. One such strategy is to administer these as a continuous IV infusion.

View Article and Find Full Text PDF

Breast cancer is the most prevalent cancer among women, posing significant challenges due to its heterogeneity. Recent studies suggest that the ketogenic diet (KD) may enhance chemotherapy efficacy by modulating cancer cell metabolism, particularly through the elevation of ketone bodies like β-hydroxybutyrate (BHB). This study investigates the effects of BHB on breast cancer cells using both 2D and 3D culture models, focusing on its role in developing resistance to fluorouracil (5-FU).

View Article and Find Full Text PDF

Metabolomics Insights into the Benefits of SGLT2 Inhibitors in Type 2 Diabetes.

Clin Pharmacol

August 2025

Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.

Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are an established class of agents in the treatment of type 2 diabetes mellitus (T2DM), with proven cardiovascular and renal benefits. However, their precise mechanisms of action remain incompletely understood. Metabolomics offers a powerful approach to uncovering drug-induced alterations in metabolic pathways.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), the main catechin in green tea, is associated with antidiabetic and anti-obesity effects, although its acute hepatic actions remain unclear. We investigated short-term effects of EGCG (10-500 μm) using isolated perfused rat livers and complementary assays in mitochondrial, microsomal, and cytosolic fractions. EGCG markedly inhibited gluconeogenesis from lactate (up to 52%), glycerol (33%), and alanine (47%), while it stimulated glycolysis, glycogenolysis, and oleic acid oxidation (+42% total ketone bodies).

View Article and Find Full Text PDF