Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network.

Eur Radiol

Department of Neurosurgery, Sichuan University, West China Hospital, No. 37, GuoXue Alley, Chengdu, 610041, People's Republic of China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To develop a U-Net-based deep learning model for automated segmentation of craniopharyngioma.

Methods: A total number of 264 patients diagnosed with craniopharyngiomas were included in this research. Pre-treatment MRIs were collected, annotated, and used as ground truth to learn and evaluate the deep learning model. Thirty-eight patients from another institution were used for independently external testing. The proposed segmentation model was constructed based on a U-Net architecture. Dice similarity coefficients (DSCs), Hausdorff distance of 95% percentile (95HD), Jaccard value, true positive rate (TPR), and false positive rate (FPR) of each case were calculated. One-way ANOVA analysis was used to investigate if the model performance was associated with the radiological characteristics of tumors.

Results: The proposed model showed a good performance in segmentation with average DSCs of 0.840, Jaccard of 0.734, TPR of 0.820, FPR of 0.000, and 95HD of 3.669 mm. It performed feasibly in the independent external test set, with average DSCs of 0.816, Jaccard of 0.704, TPR of 0.765, FPR of 0.000, and 95HD of 4.201 mm. Also, one-way ANOVA suggested the performance was not statistically associated with radiological characteristics, including predominantly composition (p = 0.370), lobulated shape (p = 0.353), compressed or enclosed ICA (p = 0.809), and cavernous sinus invasion (p = 0.283).

Conclusions: The proposed deep learning model shows promising results for the automated segmentation of craniopharyngioma.

Key Points: • The segmentation model based on U-Net showed good performance in segmentation of craniopharyngioma. • The proposed model showed good performance regardless of the radiological characteristics of craniopharyngioma. • The model achieved feasibility in the independent external dataset obtained from another center.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017618PMC
http://dx.doi.org/10.1007/s00330-022-09216-1DOI Listing

Publication Analysis

Top Keywords

automated segmentation
12
deep learning
12
learning model
12
radiological characteristics
12
good performance
12
model
9
segmentation craniopharyngioma
8
u-net-based deep
8
segmentation model
8
based u-net
8

Similar Publications

Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.

View Article and Find Full Text PDF

Background: When analyzing cells in culture, assessing cell morphology (shape), confluency (density), and growth patterns are necessary for understanding cell health. These parameters are generally obtained by a skilled biologist inspecting light microscope images, but this can become very laborious for high-throughput applications. One way to speed up this process is by automating cell segmentation.

View Article and Find Full Text PDF

With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.

View Article and Find Full Text PDF

Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.

Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.

View Article and Find Full Text PDF

Computer-aided diagnostic (CAD) systems for color fundus images play a critical role in the early detection of fundus diseases, including diabetes, hypertension, and cerebrovascular disorders. Although deep learning has substantially advanced automatic segmentation techniques in this field, several challenges persist, such as limited labeled datasets, significant structural variations in blood vessels, and persistent dataset discrepancies, which continue to hinder progress. These challenges lead to inconsistent segmentation performance, particularly for small vessels and branch regions.

View Article and Find Full Text PDF