98%
921
2 minutes
20
Objectives: To develop a U-Net-based deep learning model for automated segmentation of craniopharyngioma.
Methods: A total number of 264 patients diagnosed with craniopharyngiomas were included in this research. Pre-treatment MRIs were collected, annotated, and used as ground truth to learn and evaluate the deep learning model. Thirty-eight patients from another institution were used for independently external testing. The proposed segmentation model was constructed based on a U-Net architecture. Dice similarity coefficients (DSCs), Hausdorff distance of 95% percentile (95HD), Jaccard value, true positive rate (TPR), and false positive rate (FPR) of each case were calculated. One-way ANOVA analysis was used to investigate if the model performance was associated with the radiological characteristics of tumors.
Results: The proposed model showed a good performance in segmentation with average DSCs of 0.840, Jaccard of 0.734, TPR of 0.820, FPR of 0.000, and 95HD of 3.669 mm. It performed feasibly in the independent external test set, with average DSCs of 0.816, Jaccard of 0.704, TPR of 0.765, FPR of 0.000, and 95HD of 4.201 mm. Also, one-way ANOVA suggested the performance was not statistically associated with radiological characteristics, including predominantly composition (p = 0.370), lobulated shape (p = 0.353), compressed or enclosed ICA (p = 0.809), and cavernous sinus invasion (p = 0.283).
Conclusions: The proposed deep learning model shows promising results for the automated segmentation of craniopharyngioma.
Key Points: • The segmentation model based on U-Net showed good performance in segmentation of craniopharyngioma. • The proposed model showed good performance regardless of the radiological characteristics of craniopharyngioma. • The model achieved feasibility in the independent external dataset obtained from another center.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017618 | PMC |
http://dx.doi.org/10.1007/s00330-022-09216-1 | DOI Listing |
Abdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFPLoS One
September 2025
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, United States of America.
Background: When analyzing cells in culture, assessing cell morphology (shape), confluency (density), and growth patterns are necessary for understanding cell health. These parameters are generally obtained by a skilled biologist inspecting light microscope images, but this can become very laborious for high-throughput applications. One way to speed up this process is by automating cell segmentation.
View Article and Find Full Text PDFPLoS One
September 2025
Symbiosis Institute of Technology, Symbiosis International University, Pune, India.
With the rapid development of industrial automation and intelligent manufacturing, defect detection of electronic products has become crucial in the production process. Traditional defect detection methods often face the problems of insufficient accuracy and inefficiency when dealing with complex backgrounds, tiny defects, and multiple defect types. To overcome these problems, this paper proposes Y-MaskNet, a multi-task joint learning framework based on YOLOv5 and Mask R-CNN, which aims to improve the accuracy and efficiency of defect detection and segmentation in electronic products.
View Article and Find Full Text PDFPLoS One
September 2025
Korea University College of Medicine, Seoul, Republic of Korea.
Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.
Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.
PLoS One
September 2025
School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
Computer-aided diagnostic (CAD) systems for color fundus images play a critical role in the early detection of fundus diseases, including diabetes, hypertension, and cerebrovascular disorders. Although deep learning has substantially advanced automatic segmentation techniques in this field, several challenges persist, such as limited labeled datasets, significant structural variations in blood vessels, and persistent dataset discrepancies, which continue to hinder progress. These challenges lead to inconsistent segmentation performance, particularly for small vessels and branch regions.
View Article and Find Full Text PDF