98%
921
2 minutes
20
Hypothesis: The high surface tension of liquid metal (LM) causes interface incompatibility and poor bonding strength with many substrates. Fine adjustment towards the properties of the surface area is sufficient to introduce strong bonding. Hence, we hypothesize that the interlocking structure using hydrophilic polyvinyl alcohol (PVA) as a "bridge" should be helpful for tight interfacial bonding of LM with polymeric substrates, thus achieving high-performance LM/polymer membranes, which have wide applications in the field of soft sensors and robotics.
Experiments: The bulk EGaIn was fabricated into LM nanoparticles (LMNPs@PVA) solution. Then, PVA molecules were "doped" into the surface crosslink of the plasma treated polymer substrate by an interfacial penetrating method. Afterward, the solution was evenly dropped on the surface of the treated substrate to obtain the LMNP/polymer membrane after the water evaporated. Photothermal actuators were fabricated based on the membranes.
Findings: During the interlocking structure, PVA macromolecules could be doped and trapped onto the top surfaces of various polymer substrates as binding "bridges" between the LMNPs and the matrix materials. The achieved LMNP membrane exhibites satisfactory bonding strength, durability and water-assisted erase-reprint, which can be used as soft photothermal actuators with remote laser control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.10.134 | DOI Listing |
J Chem Phys
September 2025
August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
In this paper, we investigated the thermal, dynamical, and structural properties, as well as association patterns, in 3-phenyl-1-propanol (3P1Pol) and 3-phenyl-1-propanal (3P1Pal), with special attention paid to the latter compound. Both systems turned out to be good glass formers, differing by 17 K in the glass transition temperature, which indicated a strong change in the self-assembly pattern. This supposition was further confirmed by the analysis of dielectric spectra, where, apart from the α-relaxation, also a unique Debye (D)-mode, being a fingerprint of the self-association, characterized by different dynamical properties (dielectric strength, timescale separation from the α-process), was detected in both samples.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFFood Res Int
November 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University,
Recently, the regulatory effect of natural antioxidants on oleogels has attracted the attention of scholars. Whether natural antioxidants with different structures can co-gel with gelators remains unclear. In this study, the impact of water-soluble (dihydroquercetin and epicatechin) and fat-soluble (lycopene and L-ascorbate palmitate) antioxidants on the physicochemical properties of diacylglycerol oleogels was investigated.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.
The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.
View Article and Find Full Text PDFFood Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDF