98%
921
2 minutes
20
Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730452 | PMC |
http://dx.doi.org/10.1016/j.celrep.2022.111649 | DOI Listing |
Clin Appl Thromb Hemost
September 2025
Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
Hemophilia, an X-linked monogenic disorder, arises from mutations in the or genes, which encode clotting factor VIII (FVIII) or clotting factor IX (FIX), respectively. As a prominent hereditary coagulation disorder, hemophilia is clinically manifested by spontaneous hemorrhagic episodes. Severe cases may progress to complications such as stroke and arthropathy, significantly compromising patients' quality of life.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Center of Drug Discovery, State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 211198, China.
The advancement of bioorthogonal cleavage platforms has emerged as a critical frontier in chemical biology, offering precise molecular liberation through physiologically compatible activation mechanisms. Despite its significant potential, ensuring efficacy typically requires rapid reaction kinetics, high-efficiency payload release, and stable reactants; however, relevant reports remain sparse. Herein, we developed a strain-promoted alkyne-nitrone cycloaddition (SPANC)-based click-release chemistry through installation of a carbamate-linked release moiety at the propargyl position of cyclooctyne, triggering a spontaneous elimination following click cycloaddition to achieve efficient payload liberation.
View Article and Find Full Text PDFMater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Department of Gastroenterology and Hepatology, University of Balamand, Beirut, Lebanon.
Unlabelled: Aortic dissection is a life-threatening cardiovascular emergency, particularly Stanford type A, which typically necessitates urgent surgical intervention. Despite advances in surgical techniques and perioperative care, preoperative bleeding and coagulopathy remain significant challenges. Tranexamic acid, an antifibrinolytic agent, is widely used to minimize perioperative bleeding in cardiovascular surgeries; however, its role in the non-surgical, preoperative stabilization of aortic dissection has not been well established.
View Article and Find Full Text PDFBME Front
September 2025
State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.
View Article and Find Full Text PDF