DFT Study of Mechanism and Stereochemistry of Nickel-Catalyzed -Arylative Desymmetrizing Cyclization of Alkyne-Tethered Malononitriles.

J Org Chem

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Present here is a density functional theory (DFT) study of the mechanism and origin of enantioselectivity of Ni-catalyzed desymmetric cyclization of alkyne-tethered malononitriles and aryl boronic acids. The reaction starts from transmetalation and arylnickel addition, followed by to isomerization to give -alkenyl nickel species. The stereodetermining step is the CN insertion, which prefers a transition state with the bystander CN group staying away from the ligand to reduce steric repulsion, and gives the final ()-product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c01269DOI Listing

Publication Analysis

Top Keywords

dft study
8
study mechanism
8
cyclization alkyne-tethered
8
alkyne-tethered malononitriles
8
mechanism stereochemistry
4
stereochemistry nickel-catalyzed
4
nickel-catalyzed -arylative
4
-arylative desymmetrizing
4
desymmetrizing cyclization
4
malononitriles density
4

Similar Publications

We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').

View Article and Find Full Text PDF

An interesting ruthenium(III) complex, -[Ru(HL)Cl(PPh)], has been synthesized using a redox-active tetradentate bis-azo diamine ligand (HL). This complex represents the first example of a structurally robust, air- and moisture-stable coordination compound featuring a redox non-innocent ligand that provides a unique N4 donor set comprising both strong π-acidic (azo) and σ-donating (amido) groups. The complex has been comprehensively characterized by elemental analysis, various spectroscopic techniques, and single-crystal X-ray diffraction (SCXRD) studies.

View Article and Find Full Text PDF

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.

View Article and Find Full Text PDF

Contrastive Study on Substitution of the Bulky Phosphanide [P(SiPr)] toward Heavier Tetrylenes.

Inorg Chem

September 2025

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.

The super bulky sodium phosphanide, NaP(SiPr), was reacted with amidinatotetrylenes LECl (L = PhC(NBu), E = Si, Ge), resulting in the formation of phosphasilene LSi(SiPr) = PSiPr () and phosphanido germylene LGeP(SiPr) (), respectively. Investigation on the reactivity of and toward elemental sulfur was carried out, where a stepwise reaction yielding the silanethione LSi(=S)SiPr () and the silicon thioester analogue LSi(=S)SSiPr () was observed in the case of , while the treatment of with sulfur exclusively afforded the germanium thioester analogue. In addition, the reactions of with Fe(CO) and GeCl·1,4-dioxane led to the germylene-coordinated iron carbonyl and the asymmetric Ge-Ge-bonded complex, respectively, exhibiting the reactivity of the lone pair as well as a weak Ge-P bond.

View Article and Find Full Text PDF

This study integrates machine learning (ML) and density functional theory (DFT) to systematically investigate the oxygen electrocatalytic activity of two-dimensional (2D) TM(HXBHYB) (HX/YB = HIB (hexaaminobenzene), HHB (hexahydroxybenzene), HTB (hexathiolbenzene), and HSB (hexaselenolbenzene)) metal-organic frameworks (MOFs). By coupling transition metals (TM) with the above ligands, stable 2D TM(HXBHYB)@MOF systems were constructed. The Random Forest Regression (RFR) model outperformed the others, revealing the intrinsic relationship between the physicochemical properties of 2D TM(HXBHYB)@MOF and their ORR/OER overpotentials.

View Article and Find Full Text PDF