Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration, historically fail to detect variable features of disease, as they utilise population-based analyses, suited primarily to studying group-average effects. In this paper we therefore take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution (FA). Specifically, we explore the use of a VAE-GAN (variational autoencoder - general adversarial network) for translation called ICAM, to explicitly disentangle class relevant features, from background confounds, for improved interpretability and regression of neurological phenotypes. We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, as well as brain age prediction, for both neurodevelopment and neurodegeneration, using the developing Human Connectome Project (dHCP) and UK Biobank datasets. We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space. Our code is freely available on GitHub https://github.com/CherBass/ICAM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315989PMC
http://dx.doi.org/10.1109/TMI.2022.3221890DOI Listing

Publication Analysis

Top Keywords

classification regression
8
regression feature
8
feature attribution
8
neurological phenotypes
8
individual scans
8
icam-reg interpretable
4
interpretable classification
4
regression
4
attribution mapping
4
mapping neurological
4

Similar Publications

An Investigation of Hyperostosis Frontalis Interna in a Modern Anatomical Body Donor Population.

Clin Anat

September 2025

Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.

This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.

View Article and Find Full Text PDF

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Work-related stress among sworn and non-sworn law enforcement personnel.

Int J Police Sci Manag

November 2024

Division of Environmental Health Sciences, School of Public Health, University of Minnesota, USA.

Sworn law enforcement personnel in the United States face high rates of work-related stress. Yet, the well-being of more than 300,000 non-sworn personnel, particularly regarding work-related trauma and stress, remains underexplored. This study aims to test the hypothesis that non-sworn personnel experience lower levels of stress, comparing stress and probable post-traumatic stress disorder (PTSD) between sworn and non-sworn personnel.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Objectives: To develop a novel risk score (RS) model to predict the probability of progression to castration-resistant prostate cancer (PCa) (CRPC) after intensity-modulated radiation therapy (IMRT) for patients with high- and very high-risk PCa according to the National Comprehensive Cancer Network (NCCN) risk classification, since accurate prediction of the clinical outcome of definitive radiation therapy for patients with high- and very high-risk PCa remains challenging due to its heterogeneity.

Materials And Methods: We conducted a retrospective review of 600 patients with high- and very high-risk PCa treated with IMRT at our institution. They were randomly divided into discovery (n = 300) and validation (n = 300) cohorts.

View Article and Find Full Text PDF