98%
921
2 minutes
20
Developing novel techniques for freshness assessment are of the utmost importance in yield and trade of aquatic products. The crayfish (Prokaryophyllus clarkii) is one of the most popular freshwater products in China, and its food safety should be a serious concern. In this study, a convolutional neural network (CNN)-based portable computer vision system for freshness assessment of crayfish method was proposed. A portable microscope was utilized to collect the microscopic images of crayfish with different freshness levels. The convolutional neural network was constructed and then optimized to extract features from the microscopic images. For the pictures from the portable microscope, the prediction accuracies of freshness could be 86.5% and 83.3% when the optimized networks were applied. The results indicate that the convolutional neural network-based portable computer vision system may provide an alternative way for the freshness assessment in the crayfish industrial chain. PRACTICAL APPLICATION: Portable computer vision system was constructed by a portable microscope connected to a mobile phone. The freshness of crayfish could be rapidly assessed by analyzing the pictures of crayfish using the system. The convolutional neural network-based portable computer vision system may provide an alternative way for the freshness assessment in the crayfish industrial chain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16377 | DOI Listing |
Exp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
August 2025
Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.
Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.
View Article and Find Full Text PDFFront Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFJ Appl Stat
February 2025
Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDF