Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effect of acceptor unit order on the photophysical properties of two distinct donor-acceptor-acceptor conjugated fluorescent acrylonitriles, TPA-AN-PhBT and TPA-BT-ANPh, was systematically investigated. Compared with faintly emissive TPA-AN-PhBT in solution, TPA-BT-ANPh showed strong red-shifted fluorescence. TPA-AN-PhBT and TPA-BT-ANPh exhibited enhanced green and deep red emissions with remarkable fluorescence quantum yields up to 44% in the solid state. In addition, TPA-BT-ANPh possessed stronger two-photon absorption than TPA-AN-PhBT. Furthermore, these biocompatible dyes served as excellent fluorescent markers for specific lipid droplet imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.2c03274DOI Listing

Publication Analysis

Top Keywords

acceptor unit
8
unit order
8
tpa-an-phbt tpa-bt-anph
8
donor-acceptor-acceptor-conjugated dual-state
4
dual-state emissive
4
emissive acrylonitriles
4
acrylonitriles investigating
4
investigating acceptor
4
order biological
4
biological imaging
4

Similar Publications

The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).

View Article and Find Full Text PDF

Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.

View Article and Find Full Text PDF

The photothermal conversion efficiency (PCE) stands as a pivotal determinant in the therapeutic efficacy of photothermal nanoagents (PTNAs) within the context of photothermal therapy (PTT). The dearth of universal strategies to greatly enhance PCE has markedly curtailed the practical deployment of PTNAs. Now this problem is addressed by proposing a universal approach founded on molecular rotors and J-aggregates, "highly efficient molecular motor matrix", to greatly elevate the PCE of traditional PTNAs.

View Article and Find Full Text PDF

Achieving Efficient Solar Hydrogen Production via a Three-Motif Molecular Junction with Spatially Separated Dual Reduction Sites.

ACS Nano

September 2025

Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.

Organic semiconductors are very attractive photocatalysts for the production of solar fuels. However, their development is greatly plagued by limited visible light absorption and severe restriction of photoexcited charge carrier separation and transfer caused by the exciton effect resulting from inherent dielectric constraints. Herein, a three-motif molecular junction hydrogen evolution photocatalyst is constructed by linking a donor-acceptor-donor (D-A-D) molecule integrating the photosensitizer unit and the redox unit with holey carbon nitride sheets (HCNS) as a second electron acceptor unit (A) based on the covalent strategy.

View Article and Find Full Text PDF

A new, readily accessible inorganic hole transporting material (HTM), Cu doped SnCoO (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu doped SnCoO HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.

View Article and Find Full Text PDF