Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnesium (Mg) plays an important role in controlling bone apatite structure and density and is a potential bioactive material in repairing critical-sized bone defects. In this study, we aimed to evaluate the effect of adding NanoMgO to polycaprolactone/beta-tricalcium phosphate (PCL/β-TCP) scaffolds on bone regeneration. Novel 3D-printed porous PCL/β-TCP composite scaffolds containing 10% nanoMgO were fabricated by fused deposition modeling (FDM) and compared with PCL/β-TCP (1:1) scaffolds (control). The morphology and physicochemical properties of the scaffolds were characterized by ATR-FTIR, XRD, scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), transmission-electron-microscopy (TEM), water contact angle, and compressive strength tests and correlated to its cytocompatibility and osteogenic capacity in-vitro. To evaluate in-vivo osteogenic capacity, bone-marrow-derived stem cell (BMSC)-loaded scaffolds were implanted into 8 mm rat critical-sized calvarial defects for 12 weeks. The hydrophilic scaffolds showed 50% porosity (pore size = 504 μm). MgO nanoparticles (91.5 ± 27.6 nm) were homogenously dispersed and did not adversely affect BMSCs' viability and differentiation. Magnesium significantly increased elastic modulus, pH, and degradation. New bone formation (NBF) in Micro-CT was 30.16 ± 0.31% and 23.56 ± 1.76% in PCL/β-TCP/nanoMgO scaffolds with and without BMSCs respectively, and 19.38 ± 2.15% and 15.75 ± 2.24% in PCL/β-TCP scaffolds with and without BMSCs respectively. Angiogenesis was least remarkable in PCL/β-TCP compared with other groups (p < .05). Our results suggest that the PCL/β-TCP/nanoMgO scaffold is a more suitable bone substitute compared to PCL/β-TCP in critical-sized calvarial defects.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37465DOI Listing

Publication Analysis

Top Keywords

pcl/β-tcp scaffolds
12
scaffolds
8
osteogenic capacity
8
scaffolds bmscs
8
bone
5
pcl/β-tcp
5
3d-printed mgo
4
mgo nanoparticle
4
nanoparticle loaded
4
loaded polycaprolactone
4

Similar Publications

High cost of clinical trials hinders further enhancement of comprehensive mechanical properties of bioresorbable scaffolds (BRS). Therefore, a multi-objective optimization method combining surrogate modeling and finite element simulation is proposed, based on the evaluation of stents with various auxetic structures and materials. The results demonstrated that re-entrant hexagon stent made of PLA (PLA-RH stent) was a more ideal candidate, with superior radial recoil and force.

View Article and Find Full Text PDF

Multimodal bioprinting of pigmented skin with algorithm-tuned control.

Biomater Adv

September 2025

Key Laboratory of Artificial Intelligence & Micro Nano Sensors, Shanxi Province, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, C

This study addresses critical technical challenges in fabricating functional pigmented skin models via 3D bioprinting through the synergistic integration of droplet-based deposition and precision motion control. A hybrid bioprinting strategy was developed to create multilayer biomimetic architectures: the dermal layer was fabricated through extrusion of gelatin methacryloyl-polyacrylamide (GelMA-PAM) composites, while the epidermal layer incorporated precisely patterned melanocyte-laden GelMA-PAM arrays deposited via microvalve technology, subsequently solidified and populated with keratinocytes. To enhance printing reliability, a fractional-order proportional-integral control system optimized through particle swarm optimization (PSO-FOPI) was implemented, significantly improving motor speed regulation and positioning accuracy.

View Article and Find Full Text PDF

Surface modification of poly(ε-caprolactone) (PCL) to facilitate interactions with high pI proteins is a strategy used to enhance 3D PCL scaffolds for tissue engineering applications. The approach of the current study was to firstly optimise the surface modification on 2D films and then apply to 3D scaffolds. Melt-pressed PCL films were grafted with 2-aminoethyl methacrylate gamma radiation induced grafting to introduce amine functional groups to the substrate surfaces.

View Article and Find Full Text PDF

Critical-sized bone defects present significant clinical challenges due to inadequate vascularization and scaffold integration. This study developed a multifunctional 3D-printed polycaprolactone (PCL)-gelatin (Gel) scaffold reinforced with Bioglass particles (BGPs) or copper dopped BGPs (CuBGPs) to synergistically enhance angiogenesis and bone regeneration in rat model. The scaffolds were fabricated by infiltrating gelatin solutions containing BGPs or CuBGPs into the pores of 3D-printed PCL matrices, followed by freeze-drying.

View Article and Find Full Text PDF

Xanthan Gum-Iron System: Natural, Mechanically Tunable, Bioactive, and Magnetic-Responsive Hydrogels for Biomedical Engineering Applications.

ACS Appl Mater Interfaces

September 2025

MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Complex Tissue Regeneration, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.

Xanthan gum (XG) has performed far better than other polysaccharides for industrial purposes, e.g., food, pharmaceutical, and cosmetic applications, due to its outstanding thickening effect, pseudoplastic rheological properties, and non-toxicity.

View Article and Find Full Text PDF