98%
921
2 minutes
20
Determining the different surfaces of oxide nanocrystals is key in developing structure-property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1 layer of ceria (111), (110), and (100) facets exhibit distinct O NMR shifts at dry surfaces while these O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9517059 | PMC |
http://dx.doi.org/10.1039/d2sc03885d | DOI Listing |
Langmuir
September 2025
Product & Process Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Noble metal nanoparticles (NPs), particularly platinum (Pt), are widely used in heterogeneous catalysis due to their exceptional activity. However, controlling their size and preventing sintering during synthesis remains a major challenge, especially when aiming for high dispersion and stability on supports such as graphene. Atomic layer deposition (ALD) has emerged as a promising method to address these issues, yet conventional processes often lead to broad particle size distributions (PSDs).
View Article and Find Full Text PDFJ Drug Target
September 2025
Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDF