Solvothermal synthesis of nitrogen-doped carbon quantum dots for the sensitive detection of azithromycin.

Nanotechnology

School of Chemical and Environmental Engineering, Anhui polytechnic University, Wuhu, Anhui 241000, People's Republic of China.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carbon quantum dots are widely used in various drug detection applications because of their excellent photoluminescence properties. However, there are few reports about the detection of macrolide antibiotics. In this work, blue emitting nitrogen-doped carbon quantum dots (N-CQDs) were synthesized by using a hydrothermal method, which exhibit the most prominent emission band at 464 nm at an excitation wavelength of 414 nm. And it was found that Cualone or the macrolide antibiotic azithromycin had no significant effect on the fluorescence intensity of N-CQDs. Still, when the two were mixed, they quenched the fluorescence of N-CQDs. Based on this, a fluorescence assay for azithromycin were developed. The fluorescence of the mixture of N-CQDs and Cushowed good linearity with azithromycin (0.52-42.2M) with a low detection limit of 0.52M.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac9d44DOI Listing

Publication Analysis

Top Keywords

carbon quantum
12
quantum dots
12
nitrogen-doped carbon
8
solvothermal synthesis
4
synthesis nitrogen-doped
4
dots sensitive
4
detection
4
sensitive detection
4
azithromycin
4
detection azithromycin
4

Similar Publications

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Recent Biomedical Applications of Carbon Quantum Dots in Cancer Treatment.

J Phys Chem C Nanomater Interfaces

October 2024

Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.

Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.

View Article and Find Full Text PDF

Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.

View Article and Find Full Text PDF

Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.

Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).

View Article and Find Full Text PDF

Starch-based biopolymer films with nitrogen-doped carbon quantum dots for enhanced barrier functions via surface microarchitectures.

Int J Biol Macromol

September 2025

Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:

This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.

View Article and Find Full Text PDF