98%
921
2 minutes
20
Carbon quantum dots are widely used in various drug detection applications because of their excellent photoluminescence properties. However, there are few reports about the detection of macrolide antibiotics. In this work, blue emitting nitrogen-doped carbon quantum dots (N-CQDs) were synthesized by using a hydrothermal method, which exhibit the most prominent emission band at 464 nm at an excitation wavelength of 414 nm. And it was found that Cualone or the macrolide antibiotic azithromycin had no significant effect on the fluorescence intensity of N-CQDs. Still, when the two were mixed, they quenched the fluorescence of N-CQDs. Based on this, a fluorescence assay for azithromycin were developed. The fluorescence of the mixture of N-CQDs and Cushowed good linearity with azithromycin (0.52-42.2M) with a low detection limit of 0.52M.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac9d44 | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
October 2024
Department of Chemistry and Biochemistry, Nanoscale & Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, United States.
Carbon-based quantum dots (CQDs) have been around for a few decades. Low cell toxicity, good water solubility, excellent and tunable fluorescence properties, and the ability to dope and modify the surface of these CQDs make them an incredible choice for the visualization and treatment of various cancers. This perspective analyzes some recent progress on size-color correlation, modification, and cancer treatment applications of CQDs.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
Background: Multi-ion radiotherapy using carbon, oxygen, and neon ions aims to improve local control by increasing dose-averaged linear energy transfer (LET) in the target. However, there has been limited understanding of how to utilize variables for multi-ion treatment planning such as the selection and arrangement of ion species.
Purpose: An in silico study was conducted to explore the feasibility of increasing a minimum LET, and the optimal selection and arrangement of ion species in multi-ion therapy for increasing LET in tumors of varying sizes mimicking bone and soft tissue sarcomas (BSTS).
Int J Biol Macromol
September 2025
Department of Nanoscience and Nanoengineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey; Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey. Electronic address:
This study presents the development of multifunctional starch-based biopolymer films reinforced with nitrogen-doped carbon quantum dots (N-CQDs), synthesized via a hydrothermal method, and exhibiting a high quantum yield (~70 %). N-CQDs were incorporated into the starch matrix at varying concentrations (0.1-1.
View Article and Find Full Text PDF