Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background Therapeutic strategies for preventing paradoxical reperfusion injury after myocardial ischemia are limited. We tested whether central nervous system actions of leptin induce important protective effects on cardiac function and metabolism after myocardial ischemia/reperfusion (I/R) injury, the role of cardiac sympathetic innervation in mediating these effects, and whether there are major sex differences in the cardioprotective effects of chronic central nervous system leptin infusion. Methods and Results Myocardial I/R was induced by temporary ligation of the left descending coronary artery in male and female Wistar rats instrumented with intracerebroventricular cannula in the lateral ventricle. Vehicle or leptin (0.62 μg/h) infusion was started immediately after reperfusion and continued for 28 days using osmotic minipumps connected to the intracerebroventricular cannula. Cardiac function was assessed by echocardiography, ventricular pressures, and exercise performance. Intracerebroventricular leptin treatment markedly attenuated cardiac dysfunction post-I/R as evidenced by improved ejection fraction (56.7±1.9 versus 22.6%±1.1%), maximal rate of left ventricle rise (11 680±2122 versus 5022±441 mm Hg) and exercise performance (-4.2±7.9 versus -68.2±3.8 Δ%) compared with vehicle-treated rats. Intracerebroventricular leptin infusion reduced infarct size in females, but not males, when compared with ad-lib fed or pair-fed saline-treated rats. Intracerebroventricular leptin treatment also increased cardiac NAD/NADH content (≈10-fold) and improved mitochondrial function when compared with vehicle treatment. Cervical ganglia denervation did not attenuate the cardiac protective effects of leptin after I/R injury. Conclusions These data indicate that leptin, via its central nervous system actions, markedly improves overall heart function and mitochondrial metabolism after I/R injury regardless of sex, effects that are largely independent of cardiac sympathetic innervation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673649PMC
http://dx.doi.org/10.1161/JAHA.122.027081DOI Listing

Publication Analysis

Top Keywords

central nervous
16
nervous system
16
system actions
12
cardiac function
12
sympathetic innervation
12
i/r injury
12
intracerebroventricular leptin
12
leptin
9
actions leptin
8
cardiac
8

Similar Publications

With the persistence of difficult employment, a large number of college students feel anxious and nervous about job hunting. College students with different family economic status have various feelings and performances when faced with employment, possibly due to subjective social class differences. The present study investigated the employment confidence of 611 undergraduates in Chongqing, aimed to ascertain the overall employment confidence of Chinese college students, and tried to analyze how subjective social class works on the employment confidence of college students and its influencing mechanism.

View Article and Find Full Text PDF

MRI-negative cerebellar syndrome caused by medication-induced magnesium deficiency: a case report.

BMC Neurol

September 2025

Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.

Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.

View Article and Find Full Text PDF

Mechanisms and treatment of cancer therapy-induced peripheral and central neurotoxicity.

Nat Rev Cancer

September 2025

Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.

Neurotoxicity is a common and potentially severe adverse effect from conventional and novel cancer therapy. The mechanisms that underlie clinical symptoms of central and peripheral nervous system injury remain incompletely understood. For conventional cytotoxic chemotherapy or radiotherapy, direct toxicities to brain structures and neurovascular damage may result in myelin degradation and impaired neurogenesis, which eventually translates into delayed neurodegeneration accompanied by cognitive symptoms.

View Article and Find Full Text PDF

Dopaminergic signalling in gastrointestinal health and disease.

Nat Rev Gastroenterol Hepatol

September 2025

Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Enteric dopaminergic signalling has a critical role in gastrointestinal motility, maintaining mucosal integrity and modulating the gut microbiome. In this Review, we provide an overview of dopamine metabolism and signalling pathways in the central nervous system and periphery and their effects on gastrointestinal health and disease. We describe the physiological role of enteric dopamine, including a discussion of therapeutic opportunities and future research needs.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF