The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals.

Biomolecules

Department of Animal Biotechnology, Jeju National Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oxidative stress and mitochondrial dysfunction are associated with the pathogenesis of several human diseases. The excessive generation of reactive oxygen species (ROS) and/or lack of adequate antioxidant defenses causes DNA mutations in mitochondria, damages the mitochondrial respiratory chain, and alters membrane permeability and mitochondrial defense mechanisms. All these alterations are linked to the development of numerous diseases. Curcumin, an active ingredient of turmeric plant rhizomes, exhibits numerous biological activities (i.e., antioxidant, anti-inflammatory, anticancer, and antimicrobial). In recent years, many researchers have shown evidence that curcumin has the ability to reduce the oxidative stress- and mitochondrial dysfunction-associated diseases. In this review, we discuss curcumin's antioxidant mechanism and significance in oxidative stress reduction and suppression of mitochondrial dysfunction in mammals. We also discuss the research gaps and give our opinion on how curcumin research in mammals should proceed moving forward.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9599178PMC
http://dx.doi.org/10.3390/biom12101405DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
12
dysfunction mammals
8
oxidative stress
8
mitochondrial
6
credible role
4
curcumin
4
role curcumin
4
oxidative
4
curcumin oxidative
4
oxidative stress-mediated
4

Similar Publications

Targeting NLRP3 inflammasome with curcumin: mechanisms and therapeutic promise in chronic inflammation.

Inflammopharmacology

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.

The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Over the past few decades, liver disease has emerged as one of the leading causes of death worldwide. Liver injury is frequently associated with infections, alcohol consumption, or obesity, which trigger hepatic inflammation and ultimately lead to progressive fibrosis and carcinoma. Although various cell populations contribute to inflammatory and fibrogenic processes in the liver, macrophages serve as a pivotal mediator.

View Article and Find Full Text PDF

Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.

Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.

View Article and Find Full Text PDF

S-glutathionylation (SSG), a redox-sensitive post-translational modification mediated by glutathione, regulates protein structure and function through reversible disulfide bond formation at cysteine residues. Glutaredoxins (GRXs), pivotal antioxidant enzymes, catalyze SSG dynamics to maintain thiol homeostasis. Recent advances in redox proteomics have revealed that SSG dysregulation is intricately linked to neurodegenerative, cardiovascular, pulmonary and malignant diseases.

View Article and Find Full Text PDF