Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: One of the major causes of cerebral ventricular shunt failure is proximal catheter occlusion. We describe a novel ventricular cerebrospinal fluid (CSF) flow replicating system that assesses pressure and flow responses to varying degrees of catheter occlusion.

Methods: Ventricular catheter performance was assessed during conditions of partial and complete occlusion. The catheters were placed into a three-dimensionally-printed phantom ventricular replicating system. Artificial CSF was pumped through the ventricular system at a constant rate of 1 mL/min to mimic CSF flow, with the proximal end of the catheter in the phantom ventricle. Pressure transducer and flow rate sensors were used to measure intra-phantom pressure, outflow pressure, and CSF flow rates. The catheters were also inserted into silicone tubing and pressure was measured in the same manner for comparison with the phantom.

Results: Pressure measured in the ventricle phantom did not change when the outflow of the ventricular catheter was partially occluded. However, the intraventricular phantom pressure significantly increased when the outflow catheter was 100% occluded. The flow through the catheter showed no significant difference in rate with any degree of partial occlusion of the catheter. At the distal end of the partially occluded catheters, there was less pressure compared with the nonoccluded catheters. This difference in pressure in partially occluded catheters correlated with the percentage of catheter hole occlusion.

Conclusions: Our model mimics the physiological dynamics of the CSF flow in partially and completely obstructed ventricular catheters. We found that partial occlusion of the catheter had no effect on the CSF flow rate, but did reduce outflow pressure from the catheter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601154PMC
http://dx.doi.org/10.3390/children9101453DOI Listing

Publication Analysis

Top Keywords

csf flow
20
catheter
12
partially occluded
12
pressure
10
ventricular
8
ventricular catheters
8
proximal catheter
8
flow
8
replicating system
8
ventricular catheter
8

Similar Publications

Traditionally, clinical devices are designed, tested and improved through lengthy and expensive laboratory experiments and clinical trials [1]. More recently, computational methods have allowed for rapid testing, speeding up the design process and enabling far more complete searches of design space. While computational models cannot fully capture the complexities of biological systems, they provide valuable insights into crucial underlying mechanisms, such as the effects of fluid-structure interactions (FSIs).

View Article and Find Full Text PDF

Immunostimulatory and Immunomodulatory Effects of Vitamin B12 Derivatives on Macrophages Through the Modulation of JNK Pathway.

Cell Biochem Biophys

September 2025

Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34003, Türkiye, Turkey.

Vitamin B12 is a vital water-soluble vitamin containing a central cobalt atom within its corrin ring structure. It exists in several derivatives, among which methylcobalamin (MeCbl) and adenosylcobalamin (AdCbl) are the biologically active forms that serve as cofactors in essential enzymatic reactions. Although the neurological and hematological consequences of vitamin B12 deficiency have been extensively studied, its role in immune regulation remains less well understood.

View Article and Find Full Text PDF

The glymphatic system (GS) is a newly discovered brain anatomy. Its discovery improves our understanding of brain fluid flow and waste removal paths and provides an anatomical basis for the flow of cerebral interstitial fluid (ISF) and cerebrospinal fluid (CSF). GS occurs through a normal exchange within perivascular space (PVS), facilitating the elimination of metabolic wastes generated by nerve cells from the brain.

View Article and Find Full Text PDF

Central nervous system (CNS) involvement in acute lymphoblastic leukemia (ALL) is associated with a poor prognosis, making its accurate detection vital for treatment planning. This systematic review critically examines the role of conventional cytomorphology (CC) and multiparameter flow cytometry (FC) in analyzing cerebrospinal fluid in acute lymphoblastic leukemia cases. While CC remains the gold standard, its sensitivity is limited, particularly in cases with low cell counts.

View Article and Find Full Text PDF

Focused Ultrasound (FUS) is the concentration of acoustic energy into a small region to produce therapeutic bioeffects. FUS-induced blood-brain barrier opening (BBBO), a strategy to deliver drugs and genes to the brain, also enhances glymphatic drainage, the brain-specific waste clearance system. Thus, FUS BBBO is a promising strategy for addressing the accumulation of neurotoxic solutes that are characteristic of many neurodegenerative diseases.

View Article and Find Full Text PDF