Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microvessel bifurcations serve as the major sites of tumor cell adhesion and further extravasation. In this study, the movement, deformation, and adhesion of a circulating tumor cell flowing in a symmetric microvessel with diverging and converging bifurcations were simulated by dissipative particle dynamics combined with a spring-based network model. Effects of the initial position of the CTC, externally-applied acceleration and the presence of RBCs on the motion of the CTC were investigated. The results demonstrated that the CTC released at the centerline of the parent vessel would attach to the vessel wall when arriving at the apex of diverging bifurcation and slide into the daughter branch determined by its centroid deflection and finally form firm adhesion at relatively lower flow rates. As the external acceleration increases, the increasing shear force enlarges the contact area for the adherent CTC on the one hand and reduces the residence time on the other hand. With the presence of RBCs in the bloodstream, the collision between the adherent tumor cell at the diverging bifurcation and flowing RBCs promotes the firm adhesion of CTC at lower flow rates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10237-022-01649-3DOI Listing

Publication Analysis

Top Keywords

tumor cell
16
cell flowing
8
flowing symmetric
8
presence rbcs
8
diverging bifurcation
8
firm adhesion
8
lower flow
8
flow rates
8
ctc
5
simulation tumor
4

Similar Publications

Proteasome inhibitors are effective in treating hematologic cancers but have limited utility in brain tumors due to poor blood-brain barrier (BBB) penetration and metabolic instability. In this study, we developed novel macrocyclic peptide epoxyketone inhibitors with improved drug-like properties. Compounds were screened for cytotoxicity against brain cancer cell lines, permeability (PAMPA-BBB and Caco-2), and metabolic stability.

View Article and Find Full Text PDF

Imaging mass cytometry dataset of small-cell lung cancer tumors and tumor microenvironments.

BMC Res Notes

September 2025

Center for Molecular Medicine Cologne, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.

Objectives: Small cell lung cancer (SCLC) accounts for approximately 15% of lung tumors and is marked by aggressive growth and early metastatic spread. In this study, we used two SCLC mouse models with differing tumor mutation burdens (TMB). To investigate tumor composition, spatial architecture, and interactions with the surrounding microenvironment, we acquired multiplexed images of mouse lung tumors using imaging mass cytometry (IMC).

View Article and Find Full Text PDF

Collecting duct carcinoma (CDC) is a rare subtype of renal cell carcinoma with a poor prognosis. Moreover, despite various chemotherapeutic strategies and administration of several tyrosine kinase inhibitors for metastatic CDC, the outcomes remain unfavorable, with no established treatment. Herein, we report the cases of two patients with CDC who exhibited a good response to nivolumab and cabozantinib combination therapy.

View Article and Find Full Text PDF

Survivin, an inhibitor of apoptosis protein, is minimally expressed in normal adult tissues but overexpressed in multiple cancers. This study investigates survivin expression alongside autophagy markers ATG7 and LC3B in seven solid tumor types in Indian patient samples. Immunohistochemical analysis was performed on 48 cancer tissue samples (breast n = 7, buccal n = 6, cervical n = 5, colon n = 8, renal n = 6, liver n = 10, thyroid n = 6) and adjacent normal tissues (n = 9) using anti-human antibodies against survivin, ATG7, and LC3B.

View Article and Find Full Text PDF

Hyaluronic acid promotes biomineralization of osteoblast-like cells - observations on two different barrier membranes.

Int J Implant Dent

September 2025

Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.

Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.

Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.

View Article and Find Full Text PDF