Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification.

Chem Res Toxicol

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluoride is highly abundant in the environment. Many organisms have adapted specific defense mechanisms against high concentrations of fluoride, including the expression of proteins capable of removing fluoride from cells. However, these fluoride transporters have not been identified in all organisms, and even organisms that express fluoride transporters vary in tolerance capabilities across species, individuals, and even tissue types. This suggests that alternative factors influence fluoride tolerance. We screened for adaptation against fluoride toxicity through an unbiased mutagenesis assay conducted on lacking the fluoride exporter FEX, the primary mechanism of fluoride resistance. Over 80 independent fluoride-hardened strains were generated, with anywhere from 100- to 1200-fold increased fluoride tolerance compared to the original strain. The whole genome of each mutant strain was sequenced and compared to the wild type. The fluoride-hardened strains utilized a combination of phenotypes that individually conferred fluoride tolerance. These included intracellular acidification, cellular dormancy, nutrient storage, and a communal behavior reminiscent of flocculation. Of particular importance to fluoride resistance was intracellular acidification, which served to reverse the accumulation of fluoride and lead to its excretion from the cell as HF without the activity of a fluoride-specific protein transporter. This transport mechanism was also observed in wild-type yeast through a manual mutation to lower their cytoplasmic pH. The results demonstrate that the yeast developed a protein-free adaptation for removing an intracellular toxicant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683101PMC
http://dx.doi.org/10.1021/acs.chemrestox.2c00222DOI Listing

Publication Analysis

Top Keywords

fluoride
14
intracellular acidification
12
fluoride tolerance
12
fluoride transporters
8
fluoride resistance
8
fluoride-hardened strains
8
cells adapt
4
adapt resist
4
resist fluoride
4
fluoride metabolic
4

Similar Publications

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

Source apportionment of processes contributing to volcanic PM aerosols during the 2021 eruption of Tajogaite.

Sci Total Environ

September 2025

Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna, Tenerife, Spain.

The 2021-eruption of Tajogaite (La Palma, Canary Islands) was associated with the formation of large amounts of respirable PM aerosols (smaller than 10 μm) that triggered air quality crisis and lockdowns for ∼35,000 persons. This study aims to quantify the contribution of the aerosol formation mechanisms to the volcanic PM concentrations. During the eruption and post-eruption, we monitored trace gases (SO, HF, HCl and NO), and the size distribution and chemical composition of falling-tephra and PM aerosols.

View Article and Find Full Text PDF

Ionic liquids (ILs) have been gaining increasing focus in a variety of applications including emerging electric-propulsion concepts. A quantitative understanding of how IL ions fragment during high-energy collisions with background gases is therefore essential for interpreting mass spectra, predicting ion lifetimes in plasma and vacuum environments, and designing IL-based technologies. This work uses molecular dynamics (MD) simulations with a reactive force field to numerically model the collision-induced dissociation (CID) of isolated ions (both positive and negative) and ion clusters (2:1 and 1:2 clusters) of the prototypical ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF), colliding with a nitrogen (N) molecule, exploring all possible fragmentation channels arising from the breaking of both ionic and covalent bonds at collision energies ranging from 10 electron volts (eV) to 100 electron volts (eV) in the laboratory frame.

View Article and Find Full Text PDF

Thioformylium methylide, which is readily generated from chloromethyl(trimethylsilyl)methyl sulfide by the action of fluoride, is used for the synthesis of spirocyclic derivatives from arylidene-azolones. Four types of the corresponding heterocycles have been studied. A series of 7-thia-3-azaspiro[4.

View Article and Find Full Text PDF

Thermodynamics and polarity-driven properties of fluorinated cyclopropanes.

Beilstein J Org Chem

August 2025

Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, 37200-900, Lavras, MG, Brazil.

Cyclopropane is a significant alicyclic motif, widely utilized in medicinal chemistry, while fluorination serves as a powerful tool to modulate properties that enhance the performance of pharmaceuticals and materials. This quantum-chemical study explores the energetic implications of fluorinating cyclopropane, providing insights into molecular characteristics arising from the polar C-F bond. Isodesmic reactions revealed that the conversion of cyclopropane and methyl fluoride into mono-, di-, tri-, tetra-, penta-, and hexafluorinated cyclopropanes is exothermic, except for the all--1,2,3-trifluorocyclopropane ().

View Article and Find Full Text PDF