Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A key part of the search for extraterrestrial life is the detection of organic molecules since these molecules form the basis of all living things on Earth. Instrument suites such as SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) onboard the NASA Perseverance rover and the Mars Organic Molecule Analyzer onboard the future ExoMars Rosalind Franklin rover are designed to detect organic molecules at the martian surface. However, size, mass, and power limitations mean that these instrument suites cannot yet match the instrumental capabilities available in Earth-based laboratories. Until Mars Sample Return, the only martian samples available for study on Earth are martian meteorites. This is a collection of largely basaltic igneous rocks that have been exposed to varying degrees of terrestrial contamination. The low organic molecule abundance within igneous rocks and the expectation of terrestrial contamination make the identification of martian organics within these meteorites highly challenging. The Lafayette martian meteorite exhibits little evidence of terrestrial weathering, potentially making it a good candidate for the detection of martian organics despite uncertainties surrounding its fall history. In this study, we used ultrapure solvents to extract organic matter from triplicate samples of Lafayette and analyzed these extracts via hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Two hundred twenty-four metabolites (organic molecules) were detected in Lafayette at concentrations more than twice those present in the procedural blanks. In addition, a large number of plant-derived metabolites were putatively identified, the presence of which supports the unconfirmed report that Lafayette fell in a semirural location in Indiana. Remarkably, the putative identification of the mycotoxin deoxynivalenol (or vomitoxin), alongside the report that the collector was possibly a student at Purdue University, can be used to identify the most likely fall year as 1919.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618387PMC
http://dx.doi.org/10.1089/ast.2021.0180DOI Listing

Publication Analysis

Top Keywords

organic molecules
12
martian meteorite
8
instrument suites
8
organic molecule
8
igneous rocks
8
terrestrial contamination
8
martian organics
8
organic
7
martian
7
lafayette
5

Similar Publications

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Jahn-Teller Distortion Enables Enhanced Piezoelectric Energy Harvesting Properties of a Metal-Pyrazolylborate Complex.

Inorg Chem

September 2025

College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Molecular piezoelectrics have garnered significant attention in energy harvesting and sensing fields due to their high intrinsic piezoelectricity, low elastic properties, and excellent solution processability. Recent efforts have primarily focused on rationally tuning the piezoelectric performance of these materials through the molecular predesign of organic components. However, the regulation of piezoelectric properties via the central metal ion has remained relatively underexplored.

View Article and Find Full Text PDF

CsCO-Catalyzed Decarboxylation/Cyclization to Access Functionalized 8-Hydroxyisoquinoline-1(2)-ones and 2-Pyridones Assisted by Microwave Irradiation.

J Org Chem

September 2025

National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

We herein describe a novel decarboxylation/cyclization sequence involving a three-component reaction of dialkyl 2-(alkoxymethylene)malonate, amines, and terminal alkyne ester or internal alkyne ester catalyzed by CsCO under microwave conditions. These two types of highly chemo- and regioselective transformations were accomplished by different reaction channels to furnish a wide range of functionalized 8-hydroxyisoquinoline-1(2)-ones (21 examples) and 2-pyridones (18 examples) in good to excellent yields and might provide new opportunities for the discovery of N-heterocyclic drugs and other functional molecules.

View Article and Find Full Text PDF

Recent Progress In Organic High-Temperature Photothermal Materials.

Chem Asian J

September 2025

School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, China.

Organic high-temperature photothermal materials (T > 100 °C) have demonstrated significant application values because of their ability to exceed the temperature limits of traditional organic photothermal materials, enabling spatiotemporally controllable long-distance heating and high-temperature conversion of laser or sunlight. In this review, we summarize the recent progress in organic high-temperature photothermal materials, mainly including organic small molecule and polymer materials. Their photothermal conversion mechanisms and the factors influencing their performance as well as their applications, including photo controlled ignition/deflagration, photothermal induced actuators, photo controlled metal processing, and concentrated sunlight energy conversion were elaborated.

View Article and Find Full Text PDF