Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Assessment of swine semen quality is important as it is used as an estimate of the fertility of an ejaculate. There are many methods to measure sperm morphology, concentration, and motility, however, some methods require expensive instrumentation or are not easy to use on-farm. A portable, low-cost, automated device could provide the potential to assess semen quality in field conditions. The objective of this study was to validate the use of Fertile-Eyez (FE), a smartphone-based device, to measure sperm concentration, total motility, and morphology in boar ejaculates. Semen from six sexually mature boars were collected and mixed to create a total of 18 unique semen samples for system evaluations. Each sample was then diluted to 1:4, 1:8, 1:10, and 1:16 (for concentration only) with Androhep Plus semen extender ( = 82 total). Sperm concentration was evaluated using FE and compared to results measured using a Nucleocounter and computer assisted sperm analysis (CASA: Ceros II, Hamilton Thorne). Sperm motility was evaluated using FE and CASA. Sperm morphological assessments were evaluated by a single technician manually counting abnormalities and compared to FE deep-learning technology. Data were analyzed using both descriptive statistics (mean, standard deviation, intra-assay coefficient of variance, and residual standard deviation [RSD]) and statistical tests (correlation analysis between devices and Bland-Altman methods). Concentration analysis was strongly correlated ( = 18; > 0.967; < 0.0001) among all devices and dilutions. Analysis of motility showed moderate correlation and was significant when all dilutions are analyzed together ( = 54; = 0.558; < 0.001). The regression analysis for motility also showed the RSD as 3.95% between FE and CASA indicating a tight fit between devices. This RSD indicates that FE can find boars with unacceptable motility (boars for example with less than 70%) which impact fertility and litter size. The Bland-Altman analysis showed that FE-estimated morphological assessment and the conventionally estimated morphological score were similar, with a mean difference of ~1% (%95 Limits of Agreement: -6.2 to 8.1; = 17). The results of this experiment demonstrate that FE, a portable and automated smartphone-based device, is capable of assessing concentration, motility, and morphology of boar semen samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9558898PMC
http://dx.doi.org/10.1093/tas/txac119DOI Listing

Publication Analysis

Top Keywords

smartphone-based device
12
concentration motility
12
motility morphology
12
device measure
8
motility
8
semen quality
8
measure sperm
8
sperm concentration
8
morphology boar
8
semen samples
8

Similar Publications

Microfluidic paper-based analytical devices for food spoilage detection: emerging trends and future directions.

Talanta

September 2025

Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam. Electronic address:

Food spoilage poses a global challenge with far-reaching consequences for public health, economic stability, and environmental sustainability. Conventional analytical methods for spoilage detection though accurate are often cost-prohibitive, labor-intensive, and unsuitable for real-time or field-based monitoring. Microfluidic paper-based analytical devices (μPADs) have emerged as a transformative technology offering rapid, portable, and cost-effective solutions for food quality assessment.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

Purpose: obstructive sleep apnea is underdiagnosed due to limited access to polysomnography (PSG). We aimed to assess the performances of Apneal, an application recording sound and movements thanks to a smartphone's microphone, accelerometer and gyroscope, to estimate patients' apnea-hypopnea index (AHI).

Methods: monocentric proof-of-concept study with a first manual scoring step, then automatic detection of respiratory events from recorded signals using a sequential deep-learning model (version 0.

View Article and Find Full Text PDF

Naturally occurring bioactive compounds such as polyphenols, flavonoids, and vitamins play critical roles in human health and sustainable food systems. Yet their widespread utilization is constrained by complex detection methods and limited accessibility. This review explores how smartphones are emerging as transformative platforms for real-time analysis, enhanced synergy discovery, and personalized nutrition.

View Article and Find Full Text PDF

Background: Intensive measures of well-being and behaviors in large epidemiologic cohorts have the potential to enhance health research in these areas. Yet, little is known regarding the feasibility of using mobile technology to collect intensive data in the "natural" environment in the context of ongoing large cohort studies.

Objective: We examined the feasibility of using smartphone digital phenotyping to collect highly resolved psychological and behavioral data from participants in a pilot study with participants in Nurses' Health Study II, a nationwide prospective cohort of women.

View Article and Find Full Text PDF