Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study evaluated the pharmacokinetics and pharmacodynamics of the antiplatelet agent prasugrel, and explored its optimal dose regimens via modeling and simulation using NONMEM. We measured platelet aggregation and the serial plasma concentrations of the inactive (R-95913) and active metabolites (R-138727) of prasugrel after a single oral dose of 10-60 mg in 20 healthy adult male volunteers. A pharmacokinetic model for R-95913 and R-138727, and a pharmacodynamic model between the concentration of R-138727 and maximal platelet aggregation measured by light transmittance were constructed. The predictability of the model for platelet aggregation was evaluated by comparing the model prediction values with the observed ones not used in the construction of the model. Pharmacokinetic data were best described by a 3-compartment models for R-95913, a 1-compartment model for R-138727 with transit compartment model for absorption delay, and first-pass metabolic conversion of R-95913 into R-138727 during absorption. The association-dissociation model between R-138727 and its receptor in platelets was applied for the inhibitory effect of prasugrel on platelet aggregation. Prasugrel rapidly inhibited platelet aggregation after oral administration, with a prolonged duration of action; however, the concentration of the active metabolite decreased rapidly, which may have been due to the slow dissociation rate of R-138727 from its target receptor in platelets. The external validation suggests that our model could be used to individualize prasugrel treatment in various clinical situations. Simulation showed rapid onset of inhibitory effect with great magnitude and consistent inhibition after therapeutic dose of prasugrel.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpdd.1172DOI Listing

Publication Analysis

Top Keywords

platelet aggregation
20
model
9
modeling simulation
8
male volunteers
8
r-95913 r-138727
8
model r-138727
8
receptor platelets
8
prasugrel
7
r-138727
7
platelet
5

Similar Publications

Glanzmann thrombasthenia (GT) is a rare autosomal recessive platelet disorder characterized by abnormalities in platelet aggregation, resulting from quantitative or qualitative defects in integrins αIIb and β3. Currently, allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only potentially curative therapeutic approach for severe GT. In this report, we present 2 children with GT that underwent successful allo-HSCT, along with 2008 to 2022 data from the Center for International Blood and Marrow Transplant Research and a summary of the existing literature providing further evidence that allo-HSCT can be a curative approach that prevents severe and life-threatening bleeding in GT.

View Article and Find Full Text PDF

Objective: Vitamin C has been linked to alterations in platelet count and aggregation behavior. Given recent findings suggesting an association between vitamin C and adverse outcomes in patients with septic shock, we aimed to investigate whether vitamin C influences mortality in septic patients through its impact on platelets.

Design: Post hoc analysis of the Lessening Organ Dysfunction With Vitamin C (LOVIT) randomized trial (clinicaltrials.

View Article and Find Full Text PDF

The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.

View Article and Find Full Text PDF

Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.

View Article and Find Full Text PDF

In vitro assessment of the inhibitory effect of antiplatelet drugs on platelet aggregation is frequently employed to guide personalized antiplatelet therapy in clinical practice. However, existing methods for detecting platelet aggregation rely heavily on high concentrations of exogenous agonists, which may obscure part of the inhibitory effect of antiplatelet drugs and lead to an underestimation of their effects. This study validates a novel analytical strategy for evaluating the effects of antiplatelet drugs by quantifying the microscopic three-dimensional morphological parameters of platelet aggregates formed through spontaneous aggregation on a glass surface.

View Article and Find Full Text PDF