98%
921
2 minutes
20
Abdominal aortic aneurysm (AAA) is a life-threatening disorder that occurs in the aorta. The inflammatory thickness of the aneurysm wall and perianeurysmal fibrosis are two main causes of AAA pathogenesis; however, the molecular mechanisms involved in these two processes are still unclear. We discovered that C-terminal binding protein 1 (CtBP1) and CtBP2 were overexpressed in the aortas of AAA-model mice created by treatment with CaCl and elastase. Molecular analyses revealed that the CtBP heterodimer couples with histone acetyltransferase p300 and transcription factor AP1 (activator protein 1) to transactivate a set of matrix metalloproteinases (MMPs, including MMP1a, 3, 7, 9, and 12) and proinflammatory cytokines, including interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Knockdown of CtBPs or AP1 subunits or blockage of CtBPs with specific small molecule inhibitors significantly suppressed the in vitro expression of MMPs and proinflammatory cytokines. The administration of CtBP inhibitors in AAA-model mice also inhibited MMPs and proinflammatory cytokines, thereby improving the AAA outcome. Taken together, our results revealed a new regulatory mechanism involving MMPs and proinflammatory cytokines in the pathogenesis of AAA. This discovery suggests that targeting CtBPs may be a therapeutic strategy for AAA by attenuating the inflammatory response and matrix destruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2022.113386 | DOI Listing |
Cell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDFInt J Vitam Nutr Res
September 2025
Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300070 Tianjin, China.
Background: Retinol-binding protein 4 (RBP4) is a vitamin A transport protein synthesized in the liver and also plays a crucial role in inflammation and immune regulation. Low serum vitamin A levels have been observed in both pediatric and adult patients with ulcerative colitis (UC). The association between serum vitamin A levels and serum RBP4 levels, as well as the underlying mechanism involved inimpaired vitamin A transport during inflammation in UC patients, has yet to been investigated.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Anesthesiology, Qianjiang Maternal and Child Health and Family Planning Service Centre, Qianjiang, Hubei, China.
Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Laboratory of Experimental Physiopathology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, Brazil.
Objectives: This study aimed to compare the effects of silver nanoparticles (AgNPs) synthesized with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) versus a commercial treatment and photobiomodulation in rat palatal wounds.
Methods: In vitro cell viability tests assessed nanoparticle toxicity.
FASEB J
September 2025
Immunology Program, Laboratory of Immunology and Cellular Stress, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.
Zika virus (ZIKV) is a mosquito-borne flavivirus causing a major epidemic in the Americas in 2015. Dendritic cells (DCs) are leukocytes with key antiviral functions, but their role in ZIKV infection remains under investigation. While most studies have focused on the monocyte-derived subtype of DCs, less is known about conventional dendritic cells (cDCs), essential for the orchestration of antiviral adaptive immunity.
View Article and Find Full Text PDF