Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantum random number generators (QRNGs) promise secure randomness generation based on the foundational unpredictability of quantum mechanics. However, the unavoidable gaps between theoretical models and practical devices could lead to security invalidation. Recently, a source-independent quantum random number generator (SI-QRNG) has been proposed to solve the issue of uncharacteristic sources. However, in most current analyses of SI-QRNG protocols, the security proofs with imperfect measurements are individual for different factors and very sensitive to small deviations from theoretical models. Here, we establish a unified model for imperfect measurements in the SI-QRNG and provide a tight rate bound based on the uncertainty relation for smooth entropies. Then the performance with large device imperfections is evaluated and the randomness rate in our model can approach a similar order of magnitude of the rate upper bound in common discrete variable QRNGs. In addition, by utilizing the daily illumination and measurement devices with large imperfections, we experimentally demonstrate our scheme at the rate of the order of magnitude of Mbps.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.460907DOI Listing

Publication Analysis

Top Keywords

quantum random
12
random number
12
number generator
8
daily illumination
8
theoretical models
8
imperfect measurements
8
order magnitude
8
imperfection-insensitivity quantum
4
generator untrusted
4
untrusted daily
4

Similar Publications

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

We investigate species-rich mathematical models of ecosystems. While much of the existing literature focuses on the properties of equilibrium fixed-points, persistent dynamics (e.g.

View Article and Find Full Text PDF

Models for polymer dynamics from dimensionality reduction techniques.

J Chem Phys

September 2025

Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.

Polymer dynamics is analyzed through the lens of linear dimensionality reduction methods, in particular principal and time-lagged independent component analysis (tICA). For a polymer undergoing ideal Rouse dynamics, the slow modes identified by these transformations coincide with the conventional Rouse modes. When applied to the Fourier modes of the segment density, we show that tICA generates dynamics equivalent to dynamic self-consistent field theory (D-SCFT) with a wavevector-dependent Onsager coefficient and a free energy functional subject to the random phase approximation.

View Article and Find Full Text PDF

The collapse of the wave function as the mediator of free will in prime neurons.

Front Neurosci

August 2025

Cell Signaling Laboratory, Institute of Experimental Medicine, Universidad Central de Venezuela, Caracas, Venezuela.

In our current view of reality, free will hangs on two opposing forces. On one side, we have determinism, which states that everything is already determined by our inner constituents, the atoms and molecules that form our bodies. On the other side, we have quantum mechanics and its view that everything in the quantum world is inherently random and probabilistic.

View Article and Find Full Text PDF

Huntington's disease (HD) is a rare, neurodegenerative disorder for which only symptomatic treatments are available. The PROOF-HD study was a randomized, double-blind, placebo-controlled phase 3 trial evaluating the efficacy and safety of pridopidine, a selective Sigma-1 receptor agonist, in HD. The primary and key secondary endpoints, change in total functional capacity (TFC) and composite Unified Huntington's Disease Rating Scale (cUHDRS) score at week 65, were not met in the overall population.

View Article and Find Full Text PDF