98%
921
2 minutes
20
Axonal projection conveys neural information. The divergent and diverse projections of individual neurons imply the complexity of information flow. It is necessary to investigate the relationship between the projection and functional information at the single neuron level for understanding the rules of neural circuit assembly, but a gap remains due to a lack of methods to map the function to whole-brain projection. Here an approach is developed to bridge two-photon calcium imaging in vivo with high-resolution whole-brain imaging based on sparse labeling with the genetically encoded calcium indicator GCaMP6. Reliable whole-brain projections are captured by the high-definition fluorescent micro-optical sectioning tomography (HD-fMOST). A cross-modality cell matching is performed and the functional annotation of whole-brain projection at the single-neuron level (FAWPS) is obtained. Applying it to the layer 2/3 (L2/3) neurons in mouse visual cortex, the relationship is investigated between functional preferences and axonal projection features. The functional preference of projection motifs and the correlation between axonal length in MOs and neuronal orientation selectivity, suggest that projection motif-defined neurons form a functionally specific information flow, and the projection strength in specific targets relates to the information clarity. This pipeline provides a new way to understand the principle of neuronal information transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9685445 | PMC |
http://dx.doi.org/10.1002/advs.202202553 | DOI Listing |
Brain Res
September 2025
Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou 510632, China. Electronic address:
Orexin (Orx) is a vital peptide neurotransmitter essential for regulating feeding, sleep-wake cycles, and reward-seeking behavior. Orexinergic neurons are predominantly located in the lateral hypothalamus (LH). However, the precise neural connectivity of these neurons across the brain remains insufficiently characterized.
View Article and Find Full Text PDFBrain Commun
August 2025
Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France.
Brain age, as distinct from chronological age, may reveal post-stroke recovery mechanisms, but longitudinal studies tracking brain age are lacking. We explored longitudinal change of brain age post-stroke and its relation to upper limb sensorimotor outcome. T-weighted MRI at baseline (∼3 weeks) and follow-up (3-7 months) post-stroke was used to estimate brain age.
View Article and Find Full Text PDFNat Commun
August 2025
Zhejiang Collaborative Innovation Center for the Brain Diseases with Integrative Medicine, Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
The precise structural and functional characteristics of input circuits targeting histaminergic neurons remain poorly understood. Here, using a rabies virus retrograde tracing system combined with fluorescence micro-optical sectioning tomography, we construct a 3D monosynaptic long-range input atlas of male mouse histaminergic neurons. We identify that the hypothalamus, thalamus, pallidum, and hippocampus constitute major input sources, exhibiting diverse spatial distribution patterns and neuronal type ratios.
View Article and Find Full Text PDFNeuroimage
August 2025
Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
We previously observed sex differences in the association of individual anxiety and reaction time (RT) during identification of negative emotional scenes in a Hariri task. Prolonged RT, an attention marker, in identifying negative (vs. neutral) images correlated with anxiety level in women but not in men.
View Article and Find Full Text PDFNat Methods
August 2025
New Cornerstone Science Laboratory, Institute for Brain and Intelligence, Fudan University, Shanghai, China.
Brain networks, or connectomes, have inspired research at macro-, meso- and micro-scales. However, the rise of single-cell technologies necessitates inferring connectomes consisting of individual neurons projecting throughout the brain. Her, we present a scalable approach to map single-neuron connectivity at the whole-brain scale using two complementary methods.
View Article and Find Full Text PDF