Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A goal in the characterization of supported metal catalysts is to achieve particle-by-particle analysis of the charge state strongly correlated with the catalytic activity. Here, we demonstrate the direct identification of the charge state of individual platinum nanoparticles (NPs) supported on titanium dioxide using ultrahigh sensitivity and precision electron holography. Sophisticated phase-shift analysis for the part of the NPs protruding into the vacuum visualized slight potential changes around individual platinum NPs. The analysis revealed the number (only one to six electrons) and sense (positive or negative) of the charge per platinum NP. The underlying mechanism of platinum charging is explained by the work function differences between platinum and titanium dioxide (depending on the orientation relationship and lattice distortion) and by first-principles calculations in terms of the charge transfer processes.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abq5868DOI Listing

Publication Analysis

Top Keywords

charge state
12
direct identification
8
identification charge
8
individual platinum
8
titanium dioxide
8
platinum
6
charge
5
state single
4
single platinum
4
platinum nanoparticle
4

Similar Publications

Complexity and Health Care Utilization in Infant ESKD.

Kidney360

September 2025

Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States.

Background: Dialysis in neonates with ESKD is often associated with multiple comorbidities and the need for more intensified dialysis regimens. With recent advances in prenatal interventions and infant specific KRT, survival of neonates with ESKD has improved over the last decade. Little is known however about the impact on the health care system of improved survival in this population.

View Article and Find Full Text PDF

Giant mobility of surface-trapped ionic charges following liquid tribocharging.

Proc Natl Acad Sci U S A

September 2025

Soft Matter Sciences and Engineering, CNRS, École supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences et Lettres, Sorbonne Université, Paris 75005, France.

The sliding motion of aqueous droplets on hydrophobic surfaces leads to charge separation at the trailing edge, with implications from triple-line friction to hydrovoltaic energy generation. Charges deposited on the solid surface have been attributed to ions or electrons ripped off from the liquid drop. However, the dynamics and exact physicochemical nature of these surface-trapped charges remains poorly explored.

View Article and Find Full Text PDF

Droplets Self-Draining on the Horizontal Slippery Surface for Real-Time Anti-/De-Icing.

Nanomicro Lett

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.

Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm).

View Article and Find Full Text PDF

Radiation-induced single event effects in vertically prolonged drain dual gate Si Ge source TFET.

J Mol Model

September 2025

Department of Electronics and Communication Engineering, National Institute of Technology Patna, Patna, Bihar, India.

Context: This study investigates the radiation tolerance of a SiGe source vertical tunnel field effect transistor (VTFET) under heavy ion-induced single event effects (SEEs). Single event effects (SEEs) occur when high-energy particles interact with semiconductor devices, leading to unintended behavior. The effect of high energy ions on the VTFET is examined for various linear energy transfer (LET) values and at multiple ion hit locations.

View Article and Find Full Text PDF

Concerns over the mental health among young people have been increasing recently. We aimed to estimate the burdens of mental disorders, substance use disorders (SUDs), and self-harm at global, regional and national levels among adolescents and young adults aged 10-24 years from 1990 to 2021. Incidence, prevalence, and disability-adjusted life years (DALYs) of mental disorders, SUDs, and self-harm among young people were examined by age, sex, region, and country/territory.

View Article and Find Full Text PDF