98%
921
2 minutes
20
The composite pollution by Cr(VI) and p-chlorophenol (4-CP) has high toxicity and harms water safety. However, research on the effective removal of Cr(VI) and 4-CP composite-polluted wastewater (C&P) and efficient synchronous electricity generation with reclaimed resources is limited. In this study, a downflow Leersia hexandra constructed wetland-microbial fuel cell (DLCW-MFC) was builded to treat C&P, as well as wastewater singularly polluted by Cr(VI) (SC) and 4-CP (SP), respectively, to reveal the mechanism by which DLCW-MFC treats C&P and synchronously generates electricity. The results demonstrate that the cathode layer had a stronger removal effect on pollutants than the middle layer and anode zone layer. Moreover, SC and SP had stronger pollutant removal effects than C&P. Cr(VI) had more competitive with electrons than 4-CP, and they had a synergistic effect on efficient electricity generation. The L.hexandra in SC and SP had a better growth state and lower Cr enrichment concentration than that in C&P. Cr existed in the DLCW-MFC mainly in the form of Cr(III). Gas chromatography-mass spectrometry was used to investigate the degradation pathway of 4-CP in C&P, and indicated that Phenol, 2,4-bis(1,1-dimethylethyl)- and benzoic acid compounds were the main intermediates formed at the cathode, and further mineralized to form medium-long-chain organic compounds to form CO. The microbial community distribution results revealed that Simplicispira, Cloacibacterium, and Rhizobium are associated with Cr(VI) removal and 4-CP degradation, and were found to be rich in the cathode of C&P. The anode of C&P was found to have more Acinetobacter (1.34%) and Spirochaeta (4.83%) than SC and SP, and the total relative abundance of electricigens at the anode of C&P (7.46%) was higher than that at the anodes of SC and SP. This study can provide a theoretical foundation for the DLCW-MFC to treat heavy metal and chlorophenol composite-polluted wastewater and synchronously generate electricity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.114451 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2025
College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.
View Article and Find Full Text PDFJ Econ Entomol
September 2025
Department of Entomology and Nematology, Southwest Florida Research and Education Center (SWFREC), University of Florida/IFAS, Immokalee, FL, USA.
The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.
View Article and Find Full Text PDFTurk J Pediatr
September 2025
Division of Allergy and Asthma, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye.
Animal allergens, particularly those from cats, dogs, and horses, are significant risk factors for the development of allergic diseases in childhood. Managing animal allergies requires allergen avoidance and, when this is not feasible, specific immunotherapy. Patient history remains the cornerstone of diagnosis, providing the foundation for diagnostic algorithms.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia.
As the global urban heat island (UHI) effect intensifies, understanding how UHI intensity responds to its influencing factors changes is critical for designing effective mitigation strategies. We focused on global megacities, shifted the UHI intensity assessment from physical indicators to human-related parameters, and then evaluated how human-centered UHI intensity responded to influencing factor change. We verified a significant discrepancy between traditional UHI intensity and human-centered UHI intensity worldwide, an average absolute difference of 1.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDF