98%
921
2 minutes
20
A new synthetic strategy for macrocycles bearing multiple coordination moieties was developed. A self-assembled double helix structure, composed of two linear strands bearing 2,2'-bipyridine units and Cu(I) ions, provided access to macrocycles bearing a defined number of 2,2'-bipyridine moieties and a defined ring size, via an olefin-metathesis reaction between two linear strands in the helix. The double helix structure improved the selectivity of the macrocycle synthesis by bringing the reaction points in close proximity even in the case of large macrocycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c01194 | DOI Listing |
Carbohydr Polym
November 2025
Department of Chemical Science and Technologies, University of Tor Vergata, Via della Ricerca Scientifica, 000133 Rome, Italy. Electronic address:
Two forms of nanocellulose-based sensing materials were developed for heavy metal ions (HMIs) detection: all-solid-state and suspension. In these materials, cellulose nanofibers (CNF), isolated from cellulose bleached pulp via homogenization, were employed as a support matrix. For all-solid-state optodes development free-base 5,10,15,20-tetraphenylporphyrin (TPP) and zinc-porphyrin derivative (ZnPC) were deposited on CNF support.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
Genetically-encoded libraries of peptide-derived macrocycles containing electrophile 'warheads' (cGELs) can be used to identify potent and selective covalent ligands for protein targets. Such cGELs are synthesized either by incorporation of unnatural amino acids that display mild electrophiles on their side chains or by chemical post-translational modification (cPTM) of mRNA or phage-displayed peptide libraries. Here we investigate fundamental barriers to the synthesis of cGELs.
View Article and Find Full Text PDFNature
August 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
Small-cell lung cancers (SCLCs) contain near-universal loss-of-function mutations in RB1 and TP53, compromising the G1-S checkpoint and leading to dysregulated E2F activity. Other cancers similarly disrupt the G1-S checkpoint through loss of CDKN2A or amplification of cyclin D or cyclin E, also resulting in excessive E2F activity. Although E2F activation is essential for cell cycle progression, hyperactivation promotes apoptosis, presenting a therapeutic vulnerability.
View Article and Find Full Text PDFACS Nano
August 2025
School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin 300203, China.
Metal ion-based combination therapy holds great promise for cancer treatment. However, current codelivery systems often suffer from poor biocompatibility-associated severe side effects. Inspired by natural biomineralization processes, we developed biomineralized albumin-macrocyclic conjugates (BAMC) as a codelivery platform for metal sulfides and small-molecule drugs.
View Article and Find Full Text PDFMolecules
July 2025
Academy of Military Medical Sciences, Beijing 100850, China.
In Gram-negative bacteria, lipopolysaccharides (LPSs, also known as endotoxin) can induce extensive immune responses that will enable victims to produce severe septic shock syndrome. Because of the high mortality of sepsis in the face of standard treatment, advance detoxification schemes are urgently needed in clinics. Herein, we described a supramolecular detoxification approach via direct host-guest complexation by a giant macrocycle.
View Article and Find Full Text PDF