Computational assessment of upper airway muscular activity in obstructive sleep apnea - In vitro validation.

J Biomech

Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, Unite

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuromuscular control of the upper airway contributes to obstructive sleep apnea (OSA). An accurate, non-invasive method to assess neuromuscular function is needed to improve surgical treatment outcomes. Currently, surgical approaches for OSA are based on airway anatomy and are often not curative. When the airway surface moves, the power transferred between air in the airway lumen and the structures of the upper airway may be a measure of airway neuromuscular activity. The aim of this study was to validate power transfer as a measure of externally applied forces, representing neuromuscular activity, through cine computed tomography (CT) imaging and computational fluid dynamics (CFD) analysis in a 3D-printed airway model. A hollow elastic airway model was manufactured. An insufflation/exsufflation device generated airflow within the model lumen. The model was contained in an airtight chamber that could be positively or negatively pressurized to represent muscular forces. These forces were systematically applied to dilate and collapse the model. Cine CT imaging captured airway wall movement during respiratory cycles with and without externally applied forces. Power transfer was calculated from the product of wall movement and internal aerodynamic pressure forces using CFD simulations. Cross-correlation peaks between power transfer and changes in externally applied pressure during exhalation and inhalation were -0.79 and 0.95, respectively. Power transfer calculated via cine CT imaging and CFD was an accurate surrogate measure of externally applied forces representing airway muscular activity. In the future, power transfer may be used in clinical practice to phenotype patients with OSA and select personalized therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664483PMC
http://dx.doi.org/10.1016/j.jbiomech.2022.111304DOI Listing

Publication Analysis

Top Keywords

power transfer
20
externally applied
16
upper airway
12
applied forces
12
airway
11
airway muscular
8
muscular activity
8
obstructive sleep
8
sleep apnea
8
neuromuscular activity
8

Similar Publications

PdMoW trimetallene facilitates the electrooxidation of ethanol in alkaline electrolyte with high efficiency and C2 selectivity.

J Colloid Interface Sci

September 2025

Shanxi Center of Technology Innovation for Advanced Power Battery Material, School of Chemistry and Chemical Engineering, Shanxi Normal University, Taiyuan 030032, China. Electronic address:

Against the backdrop of global carbon neutrality target driving the transformation of energy structure, alcohol fuel cells (AFCs) show great application potential; However, the sluggish kinetics of their anodic alcohol oxidation reaction hinders the commercialization of AFCs. Metallene is a novel 2D material with potential application prospect in the field of electrocatalysis. In this paper, PdMoW trimetallene has been successfully produced by a one-pot wet-chemical method, which displays a unique two-dimensional curved ultrathin graphene structure.

View Article and Find Full Text PDF

Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.

View Article and Find Full Text PDF

Impact of airborne litterfall on radiocesium redistribution in areas adjacent to forests.

J Environ Radioact

September 2025

Forestry Solutions Technical Department, Asia Air Survey Co., Ltd., Kawasaki-City, Kanagawa, Japan.

Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, radiocesium (Cs) was deposited across forested areas. While internal cycling is well known, lateral transfer via litterfall remains unclear. This study quantified Cs dispersal from Japanese cedar and deciduous broad-leaved forests using collectors set up to 20 m beyond the forest edge.

View Article and Find Full Text PDF

Background: Age-related declines in dynamic balance and cognitive control increase fall risk in older adults (OA). Non-invasive brain stimulation, such as anodal transcranial direct current stimulation (a-tDCS), may enhance training outcomes. However, it remains unclear whether stimulation over motor or prefrontal regions is more effective for improving dynamic balance training (DBT) in OA.

View Article and Find Full Text PDF

Efficient Carrier Separation via Ru@TS@C Zeolite: Enabling Photo-Cathodes for High-Efficiency Photo-Assisted Metal-Air Batteries.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

Neutral aqueous Zn-air batteries (ZABs), while promising for extended lifespans and recyclability compared to alkaline systems, are hindered by sluggish kinetics that limit energy efficiency and power output. Here, we report an effective approach to construct a photo-assisted near-neutral ZAB based on a photo-responsive titanium silicalite-1 zeolite (TS-1). The incorporation of Ru active centers into the 3D porous architecture of TS@C (Ru@TS@C), which exhibits remarkably enhanced electronic conduction, creates interconnected conductive pathways.

View Article and Find Full Text PDF