[Transcriptome profiling of Saposhnikovia divaricata growing for different years and mining of key genes in active ingredient biosynthesis].

Zhongguo Zhong Yao Za Zhi

State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine Xianyang 712083, China China

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Saposhnikovia divaricata is a commonly used bulk medicinal plant. To explore the key enzyme genes and their expression in the biosynthesis of chromone and coumarin, the key active components, we carried out transcriptome sequencing(Illumina HiSeq) and bioinformatics analysis for the 1-year-old(S1) and 2-year-old(S2) plants of S. divaricata. A total of 40.8 Gb data was obtained. After the sequence assembly via Trinity, 110 732 transcripts and 86 233 unigenes were obtained, which were aligned and annotated with NR, Swiss-Prot, GO, KEGG, and PFAM. Daucus carota and S. divaricata had the highest sequence homology. KEGG pathway enrichment showed that the differentially expressed genes were mainly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis pathways. A total of 27 differentially expressed unigenes, including 13 enzyme genes, were identified in the pathways related to the synthesis of active ingredients in S. divaricata. Compared with S1 plant, S2 plant showed up-regulated expression of PAL, BGL, C4H, 4CL, CYP98A, CSE, REF, and CCoAOMT and down-regulated expression of CHS, CAD, and COMT. HCT and POD had both up-regulated and down-regulated unigenes. Among them, PAL, C4H, 4CL, BGL, and CHS can be used as candidate genes for the synthesis of the active ingredients in S. divaricata. The four key enzyme genes were verified by RT-qPCR, which showed the results consistent with transcriptome sequencing. This study enriches the genetic information of S. divaricata and provides support for the identification of candidate genes in the biosynthesis of secondary metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20220515.102DOI Listing

Publication Analysis

Top Keywords

enzyme genes
12
saposhnikovia divaricata
8
key enzyme
8
differentially expressed
8
synthesis active
8
active ingredients
8
ingredients divaricata
8
c4h 4cl
8
candidate genes
8
divaricata
7

Similar Publications

Small Interfering RNA Therapy Targeting the Long Noncoding RNA SMILR for Therapeutic Intervention in Coronary Artery Bypass Graft Failure.

JACC Basic Transl Sci

September 2025

BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, the Netherlands. Electronic address: andy.bak

Coronary artery bypass graft (CABG) surgery remains the gold standard of care to prevent myocardial ischemia in patients with advanced atherosclerosis; however, poor long-term graft patency remains a considerable and long-standing problem. Excessive vascular smooth muscle cell (SMC) proliferation in the grafted tissue is recognized as central to late CABG failure. We previously identified SMILR, a human-specific SMC-enriched long noncoding RNA that drives SMC proliferation, suggesting that targeting SMILR expression could be a novel way to prevent neointima formation, and thus CABG failure.

View Article and Find Full Text PDF

Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).

Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF

Chromosome 8 Open Reading Frame 76 (C8orf76) Co-Expressed with Cyclin-Dependent Kinase 4 (CDK4) as a Prognostic Indicator of Colorectal Cancer.

Biomed Environ Sci

August 2025

Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.

Objective: To explore the correlation between chromosome 8 open reading frame 76 (C8orf76) and cyclin-dependent kinase 4 (CDK4) and the potential predictive effect of C8orf76 and CDK4 on the prognosis of colorectal cancer (CRC).

Methods: We constructed a protein-protein interaction network of C8orf76-related genes and analyzed the prognostic signatures of C8orf76 and CDK4. Clinicopathological features of C8orf76 and CDK4 were visualized using a nomogram.

View Article and Find Full Text PDF

This study investigated the effects of a low-frequency polarized electric field (LFPEF) on postharvest disease resistance and storage quality of grapes. LFPEF treatment (3 h/d) significantly reduced weight loss, suppressed lesion expansion, and maintained fruit firmness by reinforcing cell wall integrity and enhancing defense-related enzyme activities. Mechanistic analyses indicated that LFPEF activated Ca signaling, promoted calcium accumulation, and upregulated calcium sensor genes, thereby contributing to membrane stabilization.

View Article and Find Full Text PDF