98%
921
2 minutes
20
Previous studies indicate that pesticide use may play an important role in the occurrence and development of rheumatoid arthritis (RA); however, little is known about the effect of specific pesticides on RA. The objective of this study was to evaluate whether pyrethroid exposure was linked to RA in adults. Data were originated from the 2007-2014 National Health and Nutrition Examination Survey (NHANES). The levels of pyrethroid exposure were assessed by 3-phenoxybenzoic acid (3-PBA) concentrations in urine samples. We built multivariate logistic regression models to assess associations between pyrethroid exposure and RA among US adults. A restricted cubic spline plot (three knots) was applied to test whether there was a nonlinear relationship between exposure to pyrethroid pesticides and the prevalence of RA. Finally, 4384 subjects were included in our analysis with 278 RA patients. In crude model, higher level of 3-PBA (creatinine-adjusted) was positively associated with RA (OR: 1.51, 95% CI: 1.07, 2.15). After adjustment for sex, race/ethnicity, education, body mass index, family poverty income, level of education, marital status, smoking status, alcohol usage, physical activity, hypertension, and urinary creatinine, the highest (vs lowest) quartile of 3-PBA was associated with an increased prevalence of RA (OR: 1.23, 95% CI: 0.86, 1.79). Significantly positive associations between 3-PBA concentration and RA were observed in the population aged between 40 and 59 years and with lower level of education. The restricted cubic spline plot presented an increase in trend and indicated that pyrethroid exposure was linearly associated with occurrence of RA (p for nonlinearity = 0.728). In conclusion, our study indicated that pyrethroid pesticide exposure was associated with an increased risk of RA. Higher levels of pyrethroid exposure were linearly associated with increased prevalence of RA in adults. Certainly, our findings are in great need of further corroboration by prospective studies with strict design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23145-y | DOI Listing |
Pesticide residues in fruits and vegetables are becoming a serious issue. These residues can affect the quality of agricultural products and people's health. Therefore, it has become crucial to effectively monitor and control pesticide residues in the food safety field.
View Article and Find Full Text PDFBackground (Skuse, 1894) and (Linnaeus, 1762) (Diptera: Culicidae) are invasive species in the Hawaiian Islands as well as other islands of the Pacific and serve as the primary vectors of arboviruses like dengue virus. Despite its significance to public health, data on their insecticide resistance remains limited. Knowledge of the level of insecticide resistance is critical in developing effective mosquito control strategies, especially when an arboviral disease outbreak occurs.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322.
At the host-environment interface, the indigenous microbiome is poised to facilitate interactions with exogenous components. Here, we show that the microbiome is necessary for metabolic and transcriptional detoxification responses to the neurotoxic pyrethroid insecticide, deltamethrin. While oral deltamethrin exposure shapes gut microbiome composition, it is not directly microbially metabolized.
View Article and Find Full Text PDFBMC Genomics
September 2025
Department of Life Sciences, University of Siena, Siena, Italy.
Background: The Japanese beetle Popillia japonica is an invasive pest that is creating a major concern due to its spread and damaging potential. Native to Japan, it was introduced in the U.S.
View Article and Find Full Text PDFEnviron Microbiol
September 2025
College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China.
Pesticide residues in the field pose significant risks to nontarget organisms, and their structures determine their environmental behaviour. However, the effects of different pesticide structures on rhizosphere microbial function remain unclear. Herein, the effects of nine pesticides with sulfonylurea, carbamate and pyrethroid motifs on the wheat rhizosphere microbiome were investigated, revealing the potential mechanisms of ecological risk accumulation.
View Article and Find Full Text PDF