98%
921
2 minutes
20
Several health benefits are obtained from resistant starch, also known as healthy starch. Enhancing resistant starch with genetic modification has huge commercial importance. The variation of resistant starch content is narrow in wheat, in relation to which limited improvement has been attained. Hence, there is a need to produce a wheat population that has a wide range of variations in resistant starch content. In the present study, stable mutants were screened that showed significant variation in the resistant starch content. A megazyme kit was used for measuring the resistant starch content, digestible starch, and total starch. The analysis of variance showed a significant difference in the mutant population for resistant starch. Furthermore, four diverse mutant lines for resistant starch content were used to study the quantitative expression patterns of 21 starch metabolic pathway genes; and to evaluate the candidate genes for resistant starch biosynthesis. The expression pattern of 21 starch metabolic pathway genes in two diverse mutant lines showed a higher expression of key genes regulating resistant starch biosynthesis ( and their isoforms) in the high resistant starch mutant lines, in comparison to the parent variety (J411). The expression of genes was higher in the low resistant starch mutants. The other three candidate genes showed overexpression (, , ) and four had reduced (, , , ) expression in high resistant starch mutants. The overexpression of and in the high resistant starch mutant line JE0146 may be due to missense mutations in these genes. Similarly, there was a stop_gained mutation for ; it also showed overexpression. In addition, the gene expression analysis of 21 starch metabolizing genes in four different mutants (low and high resistant starch mutants) shows that in addition to the important genes, several other genes (phosphorylase, isoamylases) may be involved and contribute to the biosynthesis of resistant starch. There is a need to do further study about these new genes, which are responsible for the fluctuation of resistant starch in the mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502818 | PMC |
http://dx.doi.org/10.3390/ijms231810741 | DOI Listing |
Mol Nutr Food Res
September 2025
Facultat De Medicina i Ciències De La Salut, Universitat Rovira i Virgili, Reus, Spain.
High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
Resistant starches with additional functionalities, such as starch-polyphenol complexes, are generating great interest due to the increasing incidence of diet-related diseases. However, preparing these complexes remains a major challenge due to the incompatible structures of many natural phenolic compounds. Herein, three protocols were compared for preparing novel amylose (AM) complexes with polyphenol quercetin (Q) in the presence of lauric acid (LA).
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.
Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.
Food Res Int
November 2025
Department of Food and Drug, University of Parma, Viale Parco Area delle Scienze, 43124 Parma, Italy; Institute of Biophysics, National Research Council (CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy.
The hop plant is gaining interest in the food, pharmaceutical, and cosmetics industries due to its abundance of secondary metabolites. However, branches and leaves, despite their antioxidant potential, are typically discarded. To valorize these components as functional ingredients they were dried, milled into hop powder (HP), and used to enrich bread.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. Electronic address:
Hydrocolloids are utilized in starch-based foods for water-holding, thickening, and gelation, yet their molecular interactions with starch in extrusion systems remain underexplored; this study evaluates physicochemical and multiscale structural changes in extruded starch incorporating curdlan (CG) and xanthan (XG). Incorporation of CG and XG significantly counteracted the disruption of the multiscale structure of starch caused by the extrusion treatment, and increased the content of resistant starch. It reduced the content of rapidly digestible starch in extruded starch by 4.
View Article and Find Full Text PDF