98%
921
2 minutes
20
Bacteria are equipped with a diverse set of regulatory tools that allow them to quickly adapt to their environment. The RimK system allows for Pseudomonas spp. to adapt through post-transcriptional regulation by altering the ribosomal subunit RpsF. RimK is found in a wide range of bacteria with a conserved amino acid sequence, however, the genetic context and the role of this protein is highly diverse. By solving and comparing the structures of RimK homologs from two related but functionally divergent systems, we uncovered key structural differences that likely contribute to the different activity levels of each of these homologs. Moreover, we were able to clearly resolve the active site of this protein for the first time, resolving binding of the glutamate substrate. This work advances our understanding of how subtle differences in protein sequence and structure can have profound effects on protein activity, which can in turn result in widespread mechanistic changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092738 | PMC |
http://dx.doi.org/10.1002/prot.26429 | DOI Listing |
ACS Nano
September 2025
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China.
Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Community Medicine, Faculty of Health, UiT The Arctic University of Norway, Tromsø, Norway.
Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.
View Article and Find Full Text PDFJ Org Chem
September 2025
State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
The -di(2-pyridyl)arenes, featuring a unique structure, hold significant promise for applications in fluorescent probes, synthetic nanoparticle stabilizers, and chemical synthesis. The mechanism of Ru-catalyzed decarboxylation and heteroarylation reactions of aryl carboxylic acids to access -dipyridylarenes was elucidated using DFT calculations, which involved C-H bond activation, oxidative addition, reductive elimination, and decarboxylation processes to form -di(2-pyridyl)arenes. The rate-determining step of the reaction is the second reductive elimination step with an energy barrier of 27.
View Article and Find Full Text PDFJCO Glob Oncol
May 2025
Grupo Oncoclínicas, São Paulo, Brazil.
Head and neck squamous cell carcinoma (HNSCC) represents a significant public health burden in developing countries, where access to early diagnosis, comprehensive care, and research infrastructure is limited. This article synthesizes the insights generated during a Fireside Chat convened by members of the Latin American Cooperative Oncology Group (LACOG)-Head and Neck and the Brazilian Group of Head and Neck Cancer (GBCP), with the participation of international expert Professor Hisham Mehanna. The discussion addressed key challenges and opportunities in clinical and translational research within resource-constrained settings.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Clinical Pharmacy, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.
View Article and Find Full Text PDF