98%
921
2 minutes
20
Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish. We found Rbm46 expression was restricted to the mouse germline, detectable in males in the cytoplasm of premeiotic spermatogonia and meiotic spermatocytes. To define its requirement for spermatogenesis, we generated Rbm46 knockout (KO, Rbm46-/-) mice; although male Rbm46-/- mice were viable and appeared grossly normal, they were infertile. Testes from adult Rbm46-/- mice were small, with seminiferous tubules containing only Sertoli cells and few undifferentiated spermatogonia. Using genome-wide unbiased high throughput assays RNA-seq and 'enhanced crosslinking immunoprecipitation' coupled with RNA-seq (eCLIP-seq), we discovered RBM46 could bind, via a U-rich conserved consensus sequence, to a cohort of mRNAs encoding proteins required for completion of differentiation and subsequent meiotic initiation. In summary, our studies support an essential role for RBM46 in regulating target mRNAs during spermatogonia differentiation prior to the commitment to meiosis in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529142 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1010416 | DOI Listing |
Environ Sci Technol
October 2024
College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
Short chain chlorinated paraffins (SCCPs) are widely found in various environmental media and potentially threaten human health. However, the toxicity mechanisms of SCCPs to the male reproductive system remain unclear. In this study, male BALB/c mice and GC-1 cells were used to investigate the reproductive toxicity of SCCPs and their molecular mechanisms.
View Article and Find Full Text PDFDevelopment
July 2024
Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and to promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2024
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China. Electronic address:
Embryonic stem cells (ESCs) exhibit a metabolic preference for glycolysis over oxidative phosphorylation to meet their substantial adenosine triphosphate (ATP) demands during self-renewal. This metabolic choice inherently maintains low mitochondrial activity and minimal reactive oxygen species (ROS) generation. Nonetheless, the intricate molecular mechanisms governing the restraint of ROS production and the mitigation of cellular damage remain incompletely elucidated.
View Article and Find Full Text PDFUnlabelled: The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis.
View Article and Find Full Text PDFProtein Cell
January 2023
CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
RBM46 is a germ cell-specific RNA-binding protein required for gametogenesis, but the targets and molecular functions of RBM46 remain unknown. Here, we demonstrate that RBM46 binds at specific motifs in the 3'UTRs of mRNAs encoding multiple meiotic cohesin subunits and show that RBM46 is required for normal synaptonemal complex formation during meiosis initiation. Using a recently reported, high-resolution technique known as LACE-seq and working with low-input cells, we profiled the targets of RBM46 at single-nucleotide resolution in leptotene and zygotene stage gametes.
View Article and Find Full Text PDF