Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-04321-yDOI Listing

Publication Analysis

Top Keywords

field flow
16
flow fractionation
16
nanoplastics food
16
multidetector field
12
food
8
nanoplastics
7
finding tiny
4
tiny plastic
4
plastic needle
4
needle haystack
4

Similar Publications

Spillover of SARS-CoV-2 to Domestic Dogs in COVID-19-Positive Households: A One Health Surveillance Study.

Virus Res

September 2025

Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA. Electronic address:

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is capable of infecting multiple species through human-to-animal spillover. Human to animal spillovers have been documented both in domestic and wild animal species. Due to close contact in shared households, pet dogs may be at increased risk for contracting the SARS-CoV-2 virus from infected individuals in the same household.

View Article and Find Full Text PDF

Background: In autoimmune disease it is not understood how self-reactive B cells escape immune tolerance checkpoints to produce pathogenic autoantibodies.

Objective: In patients with demyelinating polyneuropathy caused by IgM autoantibodies against myelin associated glycoprotein (MAG) and the sulphated trisaccharide CD57, we aimed to test the hypothesis that B cells making the autoantibody escaped tolerance by acquiring lymphoma driver somatic mutations.

Methods: Deep single-cell RNA, DNA, flow cytometric and antibody specificity analysis of blood from three patients with MAG neuropathy.

View Article and Find Full Text PDF

Background: Carotid web (CaW) is a rare fibromuscular dysplasia lesion at the carotid bifurcation linked to thromboembolic events in young patients. CaW-induced hemodynamic disturbances contribute to thrombosis, but the impact of CaW morphology on long-term thrombotic risk remains unclear.

Method: This study developed three-dimensional numerical models based on patient-specific carotid artery anatomy with CaW angles of 30°, 60°, and 90° (models A, B, and C).

View Article and Find Full Text PDF

The miniaturization of separation platforms marks a transformative shift in analytical science, merging microfabrication, automation, and intelligent data integration to meet rising demands for portability, sustainability, and precision. This review critically synthesizes recent technological advances reshaping the field-from microinjection and preconcentration modules to compact, high-sensitivity detection systems including ultraviolet-visible (UV/Vis), fluorescence (FL), electrochemical detection (ECD), and mass spectrometry (MS). The integration of microcontrollers, AI-enhanced calibration routines, and IoT-enabled feedback loops has led to the rise of self-regulating analytical devices capable of real-time decision-making and autonomous operation.

View Article and Find Full Text PDF

Magnetic-field enhancement of the oxygen evolution reaction (OER) represents a promising route toward more efficient alkaline water electrolyzers, yet its origin remains debated due to overlapping effects of mass transport and reaction kinetics. Here, we present a general experimental strategy that employs strong forced convection to suppress uncontrolled transport arising from natural diffusion and magnetohydrodynamic (MHD) flows. Using polycrystalline Au electrodes, we show that this approach resolves subtle OER variations under controlled flow and field conditions.

View Article and Find Full Text PDF