Integrated Analysis of the microRNA-mRNA Network Predicts Potential Regulators of Atrial Fibrillation in Humans.

Cells

The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Q

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atrial fibrillation (AF) is a form of sustained cardiac arrhythmia and microRNAs (miRs) play crucial roles in the pathophysiology of AF. To identify novel miR-mRNA pairs, we performed RNA-seq from atrial biopsies of persistent AF patients and non-AF patients with normal sinus rhythm (SR). Differentially expressed miRs (11 down and 9 up) and mRNAs (95 up and 82 down) were identified and hierarchically clustered in a heat map. Subsequently, GO, KEGG, and GSEA analyses were run to identify deregulated pathways. Then, miR targets were predicted in the miRDB database, and a regulatory network of negatively correlated miR-mRNA pairs was constructed using Cytoscape. To select potential candidate genes from GSEA analysis, the top-50 enriched genes in GSEA were overlaid with predicted targets of differentially deregulated miRs. Further, the protein-protein interaction (PPI) network of enriched genes in GSEA was constructed, and subsequently, GO and canonical pathway analyses were run for genes in the PPI network. Our analyses showed that TNF-α, p53, EMT, and SYDECAN1 signaling were among the highly affected pathways in AF samples. SDC-1 (SYNDECAN-1) was the top-enriched gene in p53, EMT, and SYDECAN1 signaling. Consistently, SDC-1 mRNA and protein levels were significantly higher in atrial samples of AF patients. Among negatively correlated miRs, miR-302b-3p was experimentally validated to suppress SDC-1 transcript levels. Overall, our results suggested that the miR-302b-3p/SDC-1 axis may be involved in the pathogenesis of AF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454849PMC
http://dx.doi.org/10.3390/cells11172629DOI Listing

Publication Analysis

Top Keywords

genes gsea
12
atrial fibrillation
8
mir-mrna pairs
8
negatively correlated
8
enriched genes
8
ppi network
8
p53 emt
8
emt sydecan1
8
sydecan1 signaling
8
integrated analysis
4

Similar Publications

Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.

View Article and Find Full Text PDF

Polystyrene nanoparticles (PS-NPs) are prevalent environmental contaminants that can accumulate in biological tissues. This study investigates the effects of PS-NPs on TM4 cells, a Sertoli cell line crucial for maintaining the male spermatogenesis microenvironment.TM4 cells were exposed to PS-NPs (0-100 μg/mL) duration of 24 to 72 h.

View Article and Find Full Text PDF

Objective: Eukaryotic elongation factor 1 gamma (EEF1G) has emerged as a potential prognostic marker in various malignancies. Yet, its association with breast cancer (BC) prognosis, particularly in the context of body mass index (BMI) status, remains unexplored. Therefore, we investigated the prognostic value and role of EEF1G in BC across different BMI categories.

View Article and Find Full Text PDF

Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.

Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.

View Article and Find Full Text PDF

Shared Genetic Architecture Among Severe Mental Disorders: A System Biology Approach Based on Protein-Protein Interaction.

Brain Behav

September 2025

Pontificia Universidad Javeriana, Facultad De Ciencias, Departamento de Biología, Biología de Plantas y Sistemas Productivos, Bogotá, Colombia.

Introduction: The study explores shared genetic architecture among major psychiatric disorders-major depressive disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder-emphasizing their overlapping molecular pathways. Using public datasets, we identified shared genes and examined their functional implications through protein-protein interaction (PPI) networks and gene set enrichment analysis (GSEA).

Methods: Genes associated with each disorder were identified through the NCBI Gene database.

View Article and Find Full Text PDF