98%
921
2 minutes
20
CRISPR/Cas systems have been widely used for genome engineering in many plant species. However, their potentials have remained largely untapped in fruit crops, particularly in pear, due to the high levels of genomic heterozygosity and difficulties in tissue culture and stable transformation. To date, only a few reports on the application of the CRISPR/Cas9 system in pear have been documented, and have shown very low editing efficiency. Here we report a highly efficient CRISPR toolbox for loss-of-function and gain-of-function research in pear. We compared four different CRISPR/Cas9 expression systems for loss-of-function analysis and identified a potent system that showed nearly 100% editing efficiency for multi-site mutagenesis. To expand the targeting scope, we further tested different CRISPR/Cas12a and Cas12b systems in pear for the first time, albeit with low editing efficiency. In addition, we established a CRISPR activation (CRISPRa) system for multiplexed gene activation in pear calli for gain-of-function analysis. Furthermore, we successfully engineered the anthocyanin and lignin biosynthesis pathways using both CRISPR/Cas9 and CRISPRa systems in pear calli. Taking these results together, we have built a highly efficient CRISPR toolbox for genome editing and gene regulation, paving the way for functional genomics studies as well as molecular breeding in pear.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437716 | PMC |
http://dx.doi.org/10.1093/hr/uhac148 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Peng Huanwu Center for Fundamental Theory, Hefei, Anhui 230026, China.
We study nonperturbative effects of torus partition function of the TT[over ¯]-deformed 2D conformal field theory (CFT) by resurgence in this Letter and a companion paper. The deformed partition function can be written as an infinite series of the deformation parameter λ. We develop highly efficient methods to compute perturbative coefficients in the λ expansion.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Xiamen University, College of Physical Science and Technology, School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Ultrafast Laser Technology and Applica
The photonic flat band, defined by minimal dispersion and near-zero group velocity, has facilitated significant advances in optical technologies. The practical applications of flat bands, such as enhanced light-matter interactions, require efficient coupling to far-field radiation. However, achieving controlled coupling between flat bands and their corresponding localized modes with far-field radiation remains challenging and elusive.
View Article and Find Full Text PDFPLoS One
September 2025
Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt.
With the increasing demand for wind energy in the electric power generation industry, optimizing robust and efficient control strategies is essential for a wind energy conversion system (WECS). In this regard, this study proposes a novel hybrid control strategy for wind power systems directly coupled to a permanent-magnet synchronous generator (PMSG). The contribution of this work is to propose a control strategy design based on a combination of the nonlinear Backstepping approach for system stabilization according to Lyapunov theory and the application of artificial neural network to maximize energy harvesting regardless of wind speed fluctuations.
View Article and Find Full Text PDFAnn Hematol
September 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.
Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.
View Article and Find Full Text PDF