Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit Connectivity.

Adv Neurobiol

Departments of Neurology and Pathology & Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This chapter will provide an introduction into motoneuron anatomy, electrophysiological properties, firing patterns focusing on development and also describing several pathological conditions that affect mononeurons. It starts with a historical retrospective describing the early landmark work into motoneurons. The next section lays out the various types of motoneurons (alpha, beta, and gamma) and their subclasses (fast-twitch fatigable, fast-twitch fatigue-resistant, and slow-twitch fatigue resistant), highlighting the functional relevance of this classification scheme. The third section describes the development of motoneurons' passive and active electrophysiological properties. This section also defines the major terms one uses in describing how a neuron functions electrophysiologically. The electrophysiological aspects of a neuron is critical to understanding how it behaves within a circuit and contributes to behavior since the firing of an action potential is how neurons communicate with each other and with muscles. The electrophysiological changes of motoneurons over development underlies how their function changes over the lifetime of an organism. After describing the properties of individual motoneurons, the chapter then turns to revealing how motoneurons interact within complex neural circuits, with other motoneurons as well as sensory neurons, and how these circuits change over development. Finally, this chapter ends with highlighting some recent advances made in motoneuron pathology, focusing on spinal muscular atrophy, amyotrophic lateral sclerosis, and axotomy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-031-07167-6_3DOI Listing

Publication Analysis

Top Keywords

electrophysiological properties
12
anatomy electrophysiological
8
properties firing
8
firing patterns
8
motoneurons
7
electrophysiological
5
normal development
4
development pathology
4
pathology motoneurons
4
motoneurons anatomy
4

Similar Publications

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) are an important resource for identifying novel therapeutic targets and cardioprotective drugs. However, a key limitation of iPSC-CMs is their immature, fetal-like phenotype. Cultivation of iPSC-CMs in lipid-supplemented maturation media (MM) enhances the structural, metabolic and electrophysiological properties of iPSC-CMs.

View Article and Find Full Text PDF

The development of high-performance neural interfaces is critical for advancing brain-machine communication and treating neurological disorders. A major challenge in neural electrode design is achieving a seamless biological-electronic interface with optimized electrochemical properties, mechanical stability, and biocompatibility. In this study, we introduce a hierarchical micronanostructured poly(3,4-ethylenedioxythiophene)-polydopamine (PEDOT-PDA) coating on titanium nitride (TiN) microelectrodes engineered to enhance electrophysiological signal recording and neural integration.

View Article and Find Full Text PDF

Comparison of the toxicity and pharmacological effects of two insecticides against the Asian corn borer, Ostrinia furnacalis.

Pestic Biochem Physiol

November 2025

Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei 230036, China. Electronic address:

The Asian Corn Borer (ACB), Ostrinia furnacalis (Guenée) is a devastating pest of maize, causing significant yield and economic losses in Asia. GABA receptor inhibitors have served as effective tools for controlling ACB larvae over the past several decades. However, the toxicity levels and pharmacological properties of two insecticides, fluxametamide and fipronil against the ACB are still unclear.

View Article and Find Full Text PDF

The plasma membrane is actively regulated by lipid transporters that create electrochemical gradients between leaflets, and passively by scramblases that dissipate these gradients. Membrane properties such as lipid packing are critical for the proper function of transmembrane proteins, particularly mechanosensitive ion channels. Mechanosensation is a key component of many sensory processes including balance, and hearing.

View Article and Find Full Text PDF

Purpose: Mesenchymal stem cell (MSC) therapy shows promise in preclinical ischemic stroke models, yet clinical translation remains inconsistent. To address this gap, we investigated whether labeling MSCs with Ferucarbotran enables magnetic resonance imaging (MRI) tracking and enhances neural differentiation and functional integration, particularly focusing on the novel observation of spontaneous neuronal firing activity in transplanted cells.

Methods: Rat MSCs (rMSCs) were transduced with red fluorescent protein (RFP) and labeled with Ferucarbotran to generate Fer-RFP⁺ rMSCs.

View Article and Find Full Text PDF