98%
921
2 minutes
20
Photoacoustic microscopy has received great attention due to the benefits of the optical resolution contrast as well as its superior spatial resolution and relatively deep depth. Like other imaging modalities, photoacoustic images suffer from noise, and filtering techniques are required to remove them. To overcome the noise, we proposed a combination of filters, including an adaptive median filter, an effective filter for impulsive noise, and a nonlocal means filter, an effective filter for background noise, for noise removal and image quality enhancement. Our proposed method enhanced the signal-to-noise ratio by 16 dB in an in vivo study compared to the traditional image reconstruction approach and preserved the image detail with minimal blurring, which usually occurs when filtering. These experimental results verified that the proposed adaptive multistage denoising techniques could effectively improve image quality under noisy data acquisition conditions, providing a strong foundation for photoacoustic microscopy with limited laser power.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202200164 | DOI Listing |
We present a high-speed three-dimensional optical-resolution photoacoustic microscopy (OR-PAM) system featuring an optimized optical-acoustic combiner (OAC) and a novel, to our knowledge, curved scanning strategy. To enhance acoustic detection sensitivity, four OAC configurations were systematically evaluated. The design employing a spherically focused ultrasound transducer and a 45° glass reflector achieved the highest sensitivity.
View Article and Find Full Text PDFDent Mater
August 2025
Faculty of Dentistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada. Electronic address:
Objectives: Bacterial-derived secondary caries is a primary cause of dental treatment failure at the artificial material-tissue interface. We previously developed ultra-long-term antimicrobial/antidegradative drug-silica particles (DSPs) to counter this interfacial failure. The aim of the current study was to evaluate a novel DSP-filled-adhesive system via in vitro and in vivo (rat) anti-secondary-caries studies.
View Article and Find Full Text PDFBiosensors (Basel)
August 2025
School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
Full-field optical coherence tomography (FF-OCT) is a high-resolution interferometric imaging technique that enables label-free visualization of cellular structural changes. In this study, we employed a custom-built time-domain FF-OCT system to monitor morphological alterations in HeLa cells undergoing doxorubicin-induced apoptosis and ethanol-induced necrosis at the single-cell level. Apoptotic cells showed characteristic features such as echinoid spine formation, cell contraction, membrane blebbing, and filopodia reorganization.
View Article and Find Full Text PDFSci Adv
August 2025
Institute of Biological and Medical Imaging, Bioengineering Center, Helmholtz Zentrum München, Neuherberg, Germany.
Hyperspectral optoacoustic microscopy (OAM) enables obtaining images with label-free biomolecular contrast, offering excellent perspectives as a diagnostic tool to assess freshly excised and unprocessed biological samples. However, time-consuming raster scanning image formation currently limits the translation potential of OAM into the clinical setting, for instance, in intraoperative histopathological assessments, where micrographs of excised tissue need to be taken within a few minutes for fast clinical decision-making. Here, we present a non-data-driven computational framework tailored to enable fast OAM by rapid data acquisition and model-based image reconstruction, termed Bayesian raster-computed optoacoustic microscopy (BayROM).
View Article and Find Full Text PDFSTAR Protoc
August 2025
Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA; Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA. Electronic address:
Activatable photoacoustic imaging probes offer a strategy to efficiently reduce background noise from endogenous chromophores. We present a protocol for tumor imaging in mice using an activatable covalent photoacoustic imaging probe, NOx-JS013. We describe steps for synthesizing NOx-JS013, in vitro and in situ validation through gel-based activity-based protein profiling and cellular imaging, and tumor imaging of aggressive prostate cancer mouse models.
View Article and Find Full Text PDF