Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nonalcoholic fatty liver disease (NAFLD) induced by obesity is a grave threat to human health. Phytic acid (PA) is a natural compound found in high-fiber diets, such as soybeans. This study investigated the effects and mechanisms of PA on obesity, hepatic lipid metabolism, and gut-liver axis homeostasis in high-fat diet (HFD)-fed mice. PA was observed to significantly inhibit obesity and alleviate liver steatosis in mice. PA improved HFD-induced liver inflammation, oxidative stress and fibrosis. Moreover, PA improved HFD-induced colonic inflammation, gut barrier damage and systemic inflammation in mice. Furthermore, PA effectively ameliorated the decreased diversity and gut microbiota composition in HFD-fed mice. Additionally, PA decreased the abundance of harmful bacteria and and increased the abundance of probiotic bacteria and . Thus, PA is effective in restoring the homeostasis of the gut-liver axis. It further provides a theoretical basis for the prevention and treatment of NAFLD in patients with obesity by the rational intake of foods containing PA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c04406DOI Listing

Publication Analysis

Top Keywords

hfd-fed mice
12
gut-liver axis
12
phytic acid
8
inflammation oxidative
8
oxidative stress
8
high-fat diet
8
diet hfd-fed
8
improved hfd-induced
8
mice
5
acid improves
4

Similar Publications

Subcutaneous administration of the sphingosine kinase 2 inhibitor ABC294640 has no metabolic benefits in high fat diet-induced obesity in male mice.

Life Sci

September 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:

Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.

View Article and Find Full Text PDF

Diet and obesity contribute to insulin resistance and type 2 diabetes, in part via the gut microbiome. To explore the role of gut-derived metabolites in this process, we assessed portal/peripheral blood metabolites in mice with different risks of obesity/diabetes, challenged with a high-fat diet (HFD) + antibiotics. In diabetes/obesity-prone C57BL/6J mice, 111 metabolites were portally enriched and 74 were peripherally enriched, many of which differed in metabolic-syndrome-resistant 129S1/129S6 mice.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR), expressed in the liver and in the small intestine, is a key regulator of glucose and lipid metabolism. Its pharmacological modulation is explored as a potential treatment for obesity-related metabolic impairments. To develop effective pharmacological interventions, it is crucial to differentiate the individual contributions of intestinal and hepatic FXR to lipid metabolism.

View Article and Find Full Text PDF

Dietary Citrate Restores Age-Related Endothelial Cell Mitochondrial Dysfunction and Alleviates Atherosclerosis.

Aging Cell

September 2025

Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China.

Vascular aging increases the susceptibility to cardio-cerebrovascular conditions, such as atherosclerotic diseases and hypertension, the leading causes of global disability and mortality. Dietary citrate extends the lifespan of Drosophila melanogaster and Caenorhabditis elegans as well as improves the memory of mice injured by a high-fat diet (HFD); whether it alleviates vascular aging and age-related vascular diseases; however, remains unknown. Here, we showed that dietary supplementation of citrate delayed vascular aging, as evidenced by maintaining the integrity of elastic fibers and decreasing the level of the aging-related marker, CDKN1A (p21).

View Article and Find Full Text PDF

Type 2 diabetes mellitus is closely linked with obesity and associated metabolic dysfunctions, including insulin resistance, dyslipidemia, and chronic inflammation. Pentacyclic triterpene acids (PTAs) derived from are promising bioactive compounds that may help mitigate these disorders. This study investigated the effects of a PTA-rich fraction on metabolic disruptions in cellular and diet-induced obesity mouse models.

View Article and Find Full Text PDF