Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inferring resting-state functional connectivity (FC) from anatomical brain wiring, known as structural connectivity (SC), is of enormous significance in neuroscience for understanding biological neuronal networks and treating mental diseases. Both SC and FC are networks where the nodes are brain regions, and in SC, the edges are the physical fiber nerves among the nodes, while in FC, the edges are the nodes' coactivation relations. Despite the importance of SC and FC, until very recently, the rapidly growing research body on this topic has generally focused on either linear models or computational models that rely heavily on heuristics and simple assumptions regarding the mapping between FC and SC. However, the relationship between FC and SC is actually highly nonlinear and complex and contains considerable randomness; additional factors, such as the subject's age and health, can also significantly impact the SC-FC relationship and hence cannot be ignored. To address these challenges, here, we develop a novel SC-to-FC generative adversarial network (SF-GAN) framework for mapping SC to FC, along with additional metafeatures based on a newly proposed graph neural network-based generative model that is capable of learning the stochasticity. Specifically, a new graph-based conditional generative adversarial nets model is proposed, where edge convolution layers are leveraged to encode the graph patterns in the SC in the form of a graph representation. New edge deconvolution layers are then utilized to decode the representation back to FC. Additional metafeatures of subjects' profile information are integrated into the graph representation with newly designed sparse-regularized layers that can automatically select features that impact FC. Finally, we have also proposed new post hoc explainer of our SF-GAN, which can identify which subgraphs in SC strongly influence which subgraphs in FC by a new multilevel edge-correlation-guided graph clustering problem. The results of experiments conducted to test the new model confirm that it significantly outperforms existing state-of-the-art methods, with additional interpretability for identifying important metafeatures and subgraphs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3197337DOI Listing

Publication Analysis

Top Keywords

functional connectivity
8
generative adversarial
8
additional metafeatures
8
graph representation
8
graph
6
connectivity prediction
4
prediction deep
4
deep learning
4
learning graph
4
graph transformation
4

Similar Publications

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: n = 37, MDD/CSA: n = 18; CSA no MDD: n = 14; controls: n = 43). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area.

View Article and Find Full Text PDF

Cognitive decline is common in multiple sclerosis (MS), although neural mechanisms are not fully understood. The objective was to investigate the impact of mild cognitive impairment (MCI) on the relationship between resting state functional connectivity (RSFC) and cognitive function in older adults with multiple sclerosis (OAMS) and age matched healthy controls. Participants underwent magnetic resonance imaging (MRI) scans and cognitive assessments.

View Article and Find Full Text PDF

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF