Visible-light photocatalytic radical addition-translocation-cyclization to construct sulfonyl-containing azacycles.

Chem Commun (Camb)

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Herein, a novel visible-light photocatalytic radical addition-translocation-cyclization (RATC) approach for the efficient synthesis of sulfonyl-containing azacycles is described. The reaction delivers a wide range of monocyclic, bicyclic and polycyclic azacycles by using easily prepared sodium sulfinates and -homopropargylic amines as starting materials. Instead of the traditionally used toxic tin reagents and thermally hazardous azos in the RATC process, clean, renewable and sustainable visible light combined with a catalytic amount of photosensitizer is used in this process. Moreover, the successful transformation of some drug derivatives further highlights the potential application of this procedure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc03799hDOI Listing

Publication Analysis

Top Keywords

visible-light photocatalytic
8
photocatalytic radical
8
radical addition-translocation-cyclization
8
sulfonyl-containing azacycles
8
addition-translocation-cyclization construct
4
construct sulfonyl-containing
4
azacycles novel
4
novel visible-light
4
addition-translocation-cyclization ratc
4
ratc approach
4

Similar Publications

The photocatalytic stereoselective trifluoromethylselenolation of -arylalkenyl iodides with [MeN][SeCF] is described under different conditions. These reactions enabled the first controllable synthesis of arylalkenyl trifluoromethyl selenoethers in good yields and with high - or -selectivity.

View Article and Find Full Text PDF

Facet-dependent spatial charge separation in a metal-doped SrTiO photocatalyst with visible light utilization.

Chem Commun (Camb)

September 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Visible-light-responsive Rh/Sb co-doped SrTiO with engineered {100}/{110} facets (STO:RS(NaCl)) was synthesized flux-assisted crystallization. Facet-dependent spatial charge separation, driven by work function differences, enabled electrons and holes to migrate to the respective facets. This configuration tripled photocatalytic hydrogen evolution non-faceted STO:RS(w/o), overcoming the limitations of ultraviolet-only absorption and inefficient charge separation.

View Article and Find Full Text PDF

Continuous Flow Photocatalysis Boosting C─N Coupling for Sustainable High-Efficiency Formamide Synthesis.

Angew Chem Int Ed Engl

September 2025

Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, State Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.

The construction of C─N bonds from simple precursors under ambient conditions is a fundamental challenge in green chemistry, especially when it comes to avoiding energy-intensive protocols. Here, we present a continuous flow photocatalytic platform that enables the efficient coupling of C─N bonds between methanol and ammonia at ambient temperature and pressure. By synergistically engineering a Pd clusters-decorated TiO photocatalyst (1Pd/TiO) and a mass transfer-enhanced gas-liquid-solid Taylor flow reactor, the system achieves a remarkable formamide productivity of 256.

View Article and Find Full Text PDF

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF

Synergistic interface and oxygen/nitrogen vacancy engineering in g-CN/CuO under high pressure for efficient CO photoreduction.

J Colloid Interface Sci

September 2025

WPI, International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan; Mitsui Chemicals, Inc -.Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan. Electronic address:

This study explores highly active nitride-based g-CN/CuO photocatalysts for CO photoconversion by synthesizing them through high-pressure torsion (HPT) straining. Data indicate that increasing the applied strain under high pressure promotes vacancy formation and improves the electronic interaction at the g-CN/CuO interphases, enabling superior charge separation and extended light absorption. The generation of dual vacancies of oxygen and nitrogen is verified by electron paramagnetic resonance and Fourier transform infrared spectroscopic methods, and the generation of a type-II heterojunction is confirmed by band structure analysis.

View Article and Find Full Text PDF