Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: OSA is an independent risk factor for several systemic diseases. Compared with mild OSA, patients with moderate-to-severe OSA have more severe impairment in the function of all organs of the body. Due to the current limited medical condition, not every patient can be diagnosed and treated in time. To enable timely screening of patients with moderate-to-severe OSA, we selected easily accessible variables to establish a risk prediction model.

Method: We collected 492 patients who had polysomnography (PSG), and divided them into the disease-free mild OSA group (control group), and the moderate-to-severe OSA group according to the PSG results. Variables entering the model were identified by random forest plots, univariate analysis, multicollinearity test, and binary logistic regression method. Nomogram were created based on the binary logistic results, and the area under the ROC curve was used to evaluate the discriminative properties of the nomogram model. Bootstrap method was used to internally validate the nomogram model, and calibration curves were plotted after 1,000 replicate sampling of the original data, and the accuracy of the model was evaluated using the Hosmer-Lemeshow goodness-of-fit test. Finally, we performed decision curve analysis (DCA) of nomogram model, STOP-Bang questionnaire (SBQ), and NoSAS score to assess clinical utility.

Results: There are 6 variables entering the final prediction model, namely BMI, Hypertension, Morning dry mouth, Suffocating awake at night, Witnessed apnea, and ESS total score. The AUC of this prediction model was 0.976 (95% CI: 0.962-0.990). Hosmer-Lemeshow goodness-of-fit test χ = 3.3222 ( = 0.1899 > 0.05), and the calibration curve was in general agreement with the ideal curve. The model has good consistency in predicting the actual occurrence of moderate-to-severe risk, and has good prediction accuracy. The DCA shows that the net benefit of the nomogram model is higher than that of SBQ and NoSAS, with has good clinical utility.

Conclusion: The prediction model obtained in this study has good predictive power for moderate-to-severe OSA and is superior to other prediction models and questionnaires. It can be applied to the community population for screening and to the clinic for prioritization of treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9390335PMC
http://dx.doi.org/10.3389/fnins.2022.936946DOI Listing

Publication Analysis

Top Keywords

prediction model
16
moderate-to-severe osa
16
nomogram model
16
model
11
risk prediction
8
mild osa
8
patients moderate-to-severe
8
osa group
8
variables entering
8
binary logistic
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Integrating opinion dynamics and differential game modeling for sustainable groundwater management.

Water Res

September 2025

College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:

Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Purpose: In Armenia, a lower-middle-income country, cancer causes 21% of all deaths, with over half of cases diagnosed at advanced stages. Without universal health insurance, patients rely on out-of-pocket payments or black-market channels for costly immunotherapies, underscoring the need for real-world data to inform equitable policy reforms.

Methods: We conducted a multicenter, retrospective cohort study of patients who received at least one dose of an immune checkpoint inhibitor (ICI) between January 2017 and December 2023 across six Armenian oncology centers.

View Article and Find Full Text PDF